发明名称 满足完备正交和力学平衡条件的正方体单元变形分解方法
摘要 满足完备正交和力学平衡条件的正方体单元变形分解方法,包括以下步骤:第1步,8节点正方体单元的空间变形是由X方向的刚体位移、Y方向的刚体位移、Z方向的刚体位移、X方向拉压变形、Y方向拉压变形、Z方向拉压变形、XOY平面中X轴弯曲变形、XOY平面中Y轴弯曲变形、YOZ平面中Y轴弯曲变形、YOZ平面中Z轴弯曲变形、XOZ平面中X轴弯曲变形、XOZ平面中Z轴弯曲变形、XOY平面剪切变形、YOZ平面剪切变形、XOZ平面剪切变形、XOY平面刚体转动位移、YOZ平面刚体转动位移、XOZ平面刚体转动位移、X轴反向弯曲变形。基于该方法,工程设计人员可以根据有限元分析、实验室试验和现场检测资料,方便地分解出结构的延性变形(如拉压变形、弯曲变形等)和脆性变形(如剪切变形、扭转变形等)。
申请公布号 CN105677971A 申请公布日期 2016.06.15
申请号 CN201610007763.8 申请日期 2016.01.07
申请人 郑州大学 发明人 王东炜;孙攀旭;陈娜;罗芳;韩长运;王栋
分类号 G06F17/50(2006.01)I 主分类号 G06F17/50(2006.01)I
代理机构 郑州联科专利事务所(普通合伙) 41104 代理人 王聚才;薛雁超
主权项 满足完备正交和力学平衡条件的正方体单元变形分解方法,其特征在于:包括以下几个步骤:第1步,8节点正方体单元的空间变形是由X方向的刚体位移、Y方向的刚体位移、Z方向的刚体位移、X方向拉压变形、Y方向拉压变形、Z方向拉压变形、XOY平面中X轴弯曲变形、XOY平面中Y轴弯曲变形、YOZ平面中Y轴弯曲变形、YOZ平面中Z轴弯曲变形、XOZ平面中X轴弯曲变形、XOZ平面中Z轴弯曲变形、XOY平面剪切变形、YOZ平面剪切变形、XOZ平面剪切变形、XOY平面刚体转动位移、YOZ平面刚体转动位移、XOZ平面刚体转动位移、X轴反向弯曲变形、Y轴反向弯曲变形、Z轴反向弯曲变形、X轴扭剪变形、Y轴扭剪变形和Z轴扭剪变形共24种基本变形叠加组合而成;通过二次分解,可将扭剪变形进一步分解为扭转变形和反向剪切变形;针对8节点正方体单元,采用正交分解法,用单元节点坐标位移向量分别构造由X方向的刚体位移、Y方向的刚体位移、Z方向的刚体位移、X方向拉压变形、Y方向拉压变形、Z方向拉压变形、XOY平面中X轴弯曲变形、XOY平面中Y轴弯曲变形、YOZ平面中Y轴弯曲变形、YOZ平面中Z轴弯曲变形、XOZ平面中X轴弯曲变形、XOZ平面中Z轴弯曲变形、XOY平面剪切变形、YOZ平面剪切变形、XOZ平面剪切变形、XOY平面刚体转动位移、YOZ平面刚体转动位移、XOZ平面刚体转动位移、X轴反向弯曲变形、Y轴反向弯曲变形、Z轴反向弯曲变形、X轴扭剪变形、Y轴扭剪变形和Z轴扭剪变形24种基向量,并移进行归一化处理,得到基本变形向量如下:①X方向刚体位移基向量:P<sub>1</sub>=(0.3536,0,0,0.3536,0,0,0.3536,0,0,0.3536,0,0,0.3536,0,0,0.3536,0,0,0.3536,0,0,0.3536,0,0)<sup>T</sup>②Y方向刚体位移基向量:P<sub>2</sub>=(0,0.3536,0,0,0.3536,0,0,0.3536,0,0,0.3536,0,0,0.3536,0,0,0.3536,0,0,0.3536,0,0,0.3536,0)<sup>T</sup>③Z方向刚体位移基向量:P<sub>3</sub>=(0,0,0.3536,0,0,0.3536,0,0,0.3536,0,0,0.3536,0,0,0.3536,0,0,0.3536,0,0,0.3536,0,0,0.3536)<sup>T</sup>④X方向拉压变形基向量:P<sub>4</sub>=(‑0.3536,0,0,0.3536,0,0,0.3536,0,0,‑0.3536,0,0,‑0.3536,0,0,0.3536,0,0,0.3536,0,0,‑0.3536,0,0)<sup>T</sup>⑤Y方向拉压变形基向量:P<sub>5</sub>=(0,‑0.3536,0,0,‑0.3536,0,0,0.3536,0,0,0.3536,0,0,‑0.3536,0,0,‑0.3536,0,0,0.3536,0,0,0.3536,0)<sup>T</sup>⑥Z方向拉压变形基向量:P<sub>6</sub>=(0,0,‑0.3536,0,0,‑0.3536,0,0,‑0.3536,0,0,‑0.3536,0,0,0.3536,0,0,0.3536,0,0,0.3536,0,0,0.3536)<sup>T</sup>⑦XOY平面中X轴弯曲变形基向量:P<sub>7</sub>=(0.3536,0,0,‑0.3536,0,0,0.3536,0,0,‑0.3536,0,0,0.3536,0,0,‑0.3536,0,0,0.3536,0,0,‑0.3536,0,0)<sup>T</sup>⑧XOY平面中Y轴弯曲变形基向量:P<sub>8</sub>=(0,0.3536,0,0,‑0.3536,0,0,0.3536,0,0,‑0.3536,0,0,0.3536,0,0,‑0.3536,0,0,0.3536,0,0,‑0.3536,0)<sup>T</sup>⑨YOZ平面中Y轴弯曲变形基向量:P<sub>9</sub>=(0,0.3536,0,0,0.3536,0,0,‑0.3536,0,0,‑0.3536,0,0,‑0.3536,0,0,‑0.3536,0,0,0.3536,0,0,0.3536,0)<sup>T</sup>⑩YOZ平面中Z轴弯曲变形基向量:P<sub>10</sub>=(0,0,‑0.3536,0,0,‑0.3536,0,0,0.3536,0,0,0.3536,0,0,0.3536,0,0,0.3536,0,0,‑0.3536,0,0,‑0.3536)<sup>T</sup><img file="FDA0000902214250000021.GIF" wi="70" he="70" />XOZ平面中X轴弯曲变形基向量:P<sub>11</sub>=(0.3536,0,0,‑0.3536,0,0,‑0.3536,0,0,0.3536,0,0,‑0.3536,0,0,0.3536,0,0,0.3536,0,0,‑0.3536,0,0)<sup>T</sup><img file="FDA0000902214250000022.GIF" wi="69" he="69" />XOZ平面中Z轴弯曲变形基向量:P<sub>12</sub>=(0,0,0.3536,0,0,‑0.3536,0,0,‑0.3536,0,0,0.3536,0,0,‑0.3536,0,0,0.3536,0,0,0.3536,0,0,‑0.3536)<sup>T</sup><img file="FDA0000902214250000031.GIF" wi="70" he="71" />XOY平面剪切变形基向量:P<sub>13</sub>=(0.25,0.25,0,0.25,‑0.25,0,‑0.25,‑0.25,0,‑0.25,0.25,0,0.25,0.25,0,0.25,‑0.25,0,‑0.25,‑0.25,0,‑0.25,0.25,0)<sup>T</sup><img file="FDA0000902214250000032.GIF" wi="70" he="69" />YOZ平面剪切变形基向量:P<sub>14</sub>=(0,0.25,0.25,0,0.25,0.25,0,0.25,‑0.25,0,0.25,‑0.25,0,‑0.25,0.25,0,‑0.25,0.25,0,‑0.25,‑0.25,0,‑0.25,‑0.25)<sup>T</sup><img file="FDA0000902214250000033.GIF" wi="69" he="70" />XOZ平面剪切变形基向量:P<sub>15</sub>=(‑0.25,0,‑0.25,‑0.25,0,0.25,‑0.25,0,0.25,‑0.25,0,‑0.25,0.25,0,‑0.25,0.25,0,0.25,0.25,0,0.25,0.25,0,‑0.25)<sup>T</sup><img file="FDA0000902214250000034.GIF" wi="68" he="70" />XOY平面刚体转动位移基向量:P<sub>16</sub>=(‑0.25,0.25,0,‑0.25,‑0.25,0,0.25,‑0.25,0,0.25,0.25,0,‑0.25,0.25,0,‑0.25,‑0.25,0,0.25,‑0.25,0,0.25,0.25,0)<sup>T</sup><img file="FDA0000902214250000035.GIF" wi="70" he="71" />YOZ平面刚体转动位移基向量:P<sub>17</sub>=(0,0.25,‑0.25,0,0.25,‑0.25,0,0.25,0.25,0,0.25,0.25,0,‑0.25,‑0.25,0,‑0.25,‑0.25,0,‑0.25,0.25,0,‑0.25,0.25)<sup>T</sup><img file="FDA0000902214250000036.GIF" wi="70" he="69" />XOZ平面刚体转动位移基向量:P<sub>18</sub>=(0.25,0,‑0.25,0.25,0,0.25,0.25,0,0.25,0.25,0,‑0.25,‑0.25,0,‑0.25,‑0.25,0,0.25,‑0.25,0,0.25,‑0.25,0,‑0.25)<sup>T</sup><img file="FDA0000902214250000037.GIF" wi="69" he="70" />X轴反向弯曲变形基向量:P<sub>19</sub>=(0.3536,0,0,‑0.3536,0,0,0.3536,0,0,‑0.3536,0,0,‑0.3536,0,0,0.3536,0,0,‑0.3536,0,0,0.3536,0,0)<sup>T</sup><img file="FDA0000902214250000038.GIF" wi="68" he="70" />Y轴反向弯曲变形基向量:P<sub>20</sub>=(0,0.3536,0,0,‑0.3536,0,0,0.3536,0,0,‑0.3536,0,0,‑0.3536,0,0,0.3536,0,0,‑0.3536,0,0,0.3536,0)<sup>T</sup><img file="FDA0000902214250000041.GIF" wi="68" he="70" />Z轴反向弯曲变形基向量:P<sub>21</sub>=(0,0,0.3536,0,0,‑0.3536,0,0,0.3536,0,0,‑0.3536,0,0,‑0.3536,0,0,0.3536,0,0,‑0.3536,0,0,0.3536)<sup>T</sup>考虑到单元扭转变形与单元反向剪切变形的关系,利用已经得到的以上21种基本变形向量,采用Schmidt正交化方法得到单元扭剪变形基向量:<img file="FDA0000902214250000042.GIF" wi="69" he="70" />X轴扭剪变形基向量:P<sub>22</sub>=(0.3536,0,0,0.3536,0,0,‑0.3536,0,0,‑0.3536,0,0,‑0.3536,0,0,‑0.3536,0,0,0.3536,0,0,0.3536,0,0)<sup>T</sup><img file="FDA0000902214250000043.GIF" wi="70" he="70" />Y轴扭剪变形基向量:P<sub>23</sub>=(0,0.3536,0,0,‑0.3536,0,0,‑0.3536,0,0,0.3536,0,0,‑0.3536,0,0,0.3536,0,0,0.3536,0,0,‑0.3536,0)<sup>T</sup><img file="FDA0000902214250000044.GIF" wi="69" he="69" />Z轴扭剪变形基向量:P<sub>24</sub>=(0,0,0.3536,0,0,‑0.3536,0,0,0.3536,0,0,‑0.3536,0,0,0.3536,0,0,‑0.3536,0,0,0.3536,0,0,‑0.3536)<sup>T</sup>构造出24种基向量组成的完备正交坐标基矩阵为B=[P<sub>1</sub> P<sub>2</sub> P<sub>3</sub> P<sub>4</sub> P<sub>5</sub> P<sub>6</sub> … P<sub>24</sub>]第2步,采用8节点正方体单元对结构进行划分,得到结构在相应荷载工况下的各单元节点坐标的变形向量d<sub>e</sub>,d<sub>e</sub>=(x′<sub>1</sub>‑x<sub>1</sub>,y′<sub>1</sub>‑y<sub>1</sub>,z′<sub>1</sub>‑z<sub>1</sub>,x′<sub>2</sub>‑x<sub>2</sub>,y′<sub>2</sub>‑y<sub>2</sub>,z′<sub>2</sub>‑z<sub>2</sub>,x′<sub>3</sub>‑x<sub>3</sub>,y′<sub>3</sub>‑y<sub>3</sub>,z′<sub>3</sub>‑z<sub>3</sub>,x′<sub>4</sub>‑x<sub>4</sub>,y′<sub>4</sub>‑y<sub>4</sub>,z′<sub>4</sub>‑z<sub>4</sub>,x′<sub>5</sub>‑x<sub>5</sub>,y′<sub>5</sub>‑y<sub>5</sub>,z′<sub>5</sub>‑z<sub>5</sub>,x′<sub>6</sub>‑x<sub>6</sub>,y′<sub>6</sub>‑y<sub>6</sub>,z′<sub>6</sub>‑z<sub>6</sub>,x′<sub>7</sub>‑x<sub>7</sub>,y′<sub>7</sub>‑y<sub>7</sub>,z′<sub>7</sub>‑z<sub>7</sub>,x′<sub>8</sub>‑x<sub>8</sub>,y′<sub>8</sub>‑y<sub>8</sub>,z′<sub>8</sub>‑z<sub>8</sub>)<sup>T</sup>第3步,任一8节点正方体单元节点坐标的变形向量可以表达为24种基本变形向量的线性组合,单元节点坐标的变形向量可以投影到完备正交坐标基矩阵B上,即d<sub>e</sub>=B·d (1)式(1)可以转化为d=B<sup>‑1</sup>d<sub>e</sub>=B<sup>T</sup>d<sub>e</sub>  (2)其中,B<sup>‑1</sup>为B的逆矩阵,B<sup>T</sup>为B的转置矩阵,d为24种基本刚体位移和变形的贡献系数向量,d=(d<sub>1</sub> d<sub>2</sub> d<sub>3</sub> d<sub>4</sub> d<sub>5</sub> d<sub>6</sub> … d<sub>i</sub> … d<sub>24</sub>)<sup>T</sup>,式中表示任一四节点正方形单元的节点坐标位移向量可以表达为24种基本刚体位移和变形的线性组合,其中d<sub>i</sub>表示相应i种基本刚体位移或变形对该单元变形的贡献,称为贡献系数,d<sub>i</sub>的下角标i=1,2,…,24;d<sub>1</sub>为投影到单元X方向刚体位移上的贡献系数,d<sub>2</sub>为投影到单元Y方向刚体位移上的贡献系数,d<sub>3</sub>为投影到单元Z方向刚体位移上的贡献系数,d<sub>4</sub>为投影到单元X方向拉压变形上的贡献系数,d<sub>5</sub>为投影到单元Y方向拉压变形上的贡献系数,d<sub>6</sub>为投影到单元Z方向拉压变形上的贡献系数,d<sub>7</sub>为投影到单元XOY平面中X轴弯曲变形上的贡献系数,d<sub>8</sub>为投影到单元XOY平面中Y轴弯曲变形上的贡献系数,d<sub>9</sub>为投影到单元YOZ平面中Y轴弯曲变形上的贡献系数,d<sub>10</sub>为投影到单元YOZ平面中Z轴弯曲变形上的贡献系数,d<sub>11</sub>为投影到单元XOZ平面中X轴弯曲变形上的贡献系数,d<sub>12</sub>为投影到单元XOZ平面中Z轴弯曲变形上的贡献系数,d<sub>13</sub>为投影到单元XOY平面剪切变形上的贡献系数,d<sub>14</sub>为投影到单元YOZ平面剪切变形上的贡献系数,d<sub>15</sub>为投影到单元XOZ平面剪切变形上的贡献系数,d<sub>16</sub>为投影到单元XOY平面刚体转动位移上的贡献系数,d<sub>17</sub>为投影到单元YOZ平面刚体转动位移上的贡献系数,d<sub>18</sub>为投影到单元XOZ平面刚体转动位移上的贡献系数,d<sub>19</sub>为投影到单元X轴反向弯曲变形上的贡献系数,d<sub>20</sub>为投影到单元Y轴反向弯曲变形上的贡献系数,d<sub>21</sub>为投影到单元Z轴反向弯曲变形上的贡献系数,d<sub>22</sub>为投影到单元X轴扭剪变形上的贡献系数,d<sub>23</sub>为投影到单元Y轴扭剪变形上的贡献系数,d<sub>24</sub>为投影到单元Z轴扭剪变形上的贡献系数;第4步,将X方向拉压变形、Y方向拉压变形、Z方向拉压变形、XOY平面中X轴弯曲变形、XOY平面中Y轴弯曲变形、YOZ平面中Y轴弯曲变形、YOZ平面中Z轴弯曲变形、XOZ平面中X轴弯曲变形、XOZ平面中Z轴弯曲变形、XOY平面剪切变形、YOZ平面剪切变形、XOZ平面剪切变形、X轴反向弯曲变形、Y轴反向弯曲变形、Z轴反向弯曲变形、X轴扭剪变形、Y轴扭剪变形、Z轴扭剪变形18种基本变形上的贡献系数绝对值大小进行比较,绝对值最大的基本变形为单元的主要变形,从而实现结构体系的变形分解与振型识别,其中:X、Y、Z方向拉压变形的贡献系数为正时表示变形为X、Y、Z方向受拉变形;X、Y、Z方向拉压变形的投影系数为负时表示变形为X、Y、Z方向受压变形;第5步,在需要进一步分析扭转变形和反向剪切变形时,对X轴扭剪变形、Y轴扭剪变形、Z轴扭剪变形进行二次分解,分解成为XOY平面扭转变形、YOZ平面扭转变形、XOZ平面扭转变形,和XOY平面反向剪切变形、YOZ平面反向剪切变形、XOZ平面反向剪切变形。
地址 450001 河南省郑州市高新区科学大道100号