发明名称 GOA CIRCUIT BASED ON OXIDE SEMICONDUCTOR THIN FILM TRANSISTOR
摘要 The present invention provides a GOA circuit based on oxide semiconductor thin film transistor, which cannot only prevent the electrical leakage to raise the reliability of the GOA circuit but also avoid the generation of the crossfire current in the non-function period by shorting the gate and the source of the fortieth thin film transistor (T40) in the first pull-down module (400) for avoiding the influence of the constant high voltage level (DCH) to the pull-down holding of the first node by electrically coupling both the gate and the drain of the seventy-fifth thin film transistor (T75) in the pull-down holding module (600) to the first node (Q(N)), and clearing the interference of the residual charge to the GOA circuit by providing the reset module (700) to reset the first node (Q(N)) before generating the each frame to guarantee the normal output of the GOA circuit and the normal display of the image.
申请公布号 US2016351152(A1) 申请公布日期 2016.12.01
申请号 US201514771501 申请日期 2015.06.23
申请人 Shenzhen China Star Optoelectronics Technology Co. Ltd. 发明人 Dai Chao
分类号 G09G3/36;H01L27/12;H01L29/786 主分类号 G09G3/36
代理机构 代理人
主权项 1. A GOA circuit based on oxide semiconductor thin film transistor, comprising a plurality of GOA unit circuits which are cascade connected, and the GOA unit circuit of every stage comprises a pull-up controlling module, a pull-up module, a transmission module, a first pull-down module, a bootstrap capacitor module and a pull-down holding module; N is set to be a positive integer and except the GOA unit circuit of the first stage, in the GOA unit circuit of the Nth stage: the pull-up controlling module comprises an eleventh thin film transistor, and a gate of the eleventh thin film transistor receives a stage transfer signal of the GOA unit circuit of the former N−1th stage, and a source is electrically coupled to a constant high voltage level, and a drain is electrically coupled to a first node; the pull-up module comprises: a twenty-first thin film transistor, and a gate of the twenty-first thin film transistor is electrically coupled to the first node, and a source is electrically coupled to an mth set of clock signal corresponding to the GOA unit circuit of the Nth stage, and a drain outputs a scan driving signal; the transmission module comprises: a twenty-second thin film transistor, and a gate of the twenty-second thin film transistor is electrically coupled to the first node, and a source is electrically coupled to the mth set of clock signal corresponding to the GOA unit circuit of the Nth stage, and a drain outputs a stage transfer signal; the first pull-down module comprises a fortieth thin film transistor and a forty-first thin film transistor; both a gate and a source of the fortieth thin film transistor are electrically coupled to the first node, and a drain is electrically coupled to a drain of the forty-first thin film transistor; a gate of the forty-first thin film transistor is inputted with an m+2th set of clock signal corresponding to the GOA unit circuit of the after next N+2th stage, and a source is inputted with the scan driving signal; the bootstrap capacitor module comprises a capacitor, and one end of the capacitor is electrically coupled to the first node, and the other end is electrically coupled to the scan drive signal; the pull-down holding module comprises: a dual inverter composed by a plurality of thin film transistor, a forty-second thin film transistor, a thirty-second thin film transistor, a seventy-fifth thin film transistor and a seventy-sixth thin film transistor; an input end of the dual inverter is electrically coupled to the first node, and an output end is electrically coupled to a second node; a gate of the forty-second thin film transistor is electrically coupled to the second node, and a drain is electrically coupled to the first node, and a source is electrically coupled to a third node; a gate of the thirty-second thin film transistor is electrically coupled to the second node, and a drain is electrically coupled to the scan driving signal, and a source is electrically coupled to a first constant negative voltage level; both a gate and a drain of the seventy-fifth thin film transistor are electrically coupled to the first node, and a source is electrically coupled to the third node; a gate of the seventy-sixth thin film transistor is electrically coupled to the second node, and a drain is electrically coupled to the third node, and a source is electrically coupled to a second constant negative voltage level; the second constant negative voltage level is lower than the first constant negative voltage level; all the thin film transistors are oxide semiconductor thin film transistors.
地址 Shenzhen City CN