发明名称 ABNORMALITY DETECTION METHOD FOR VEHICLE BODY TILT CONTROL DEVICE
摘要 An abnormality detection method for a vehicle body tilt control device makes it possible to determine which air spring has an air supply/exhaust abnormality. A model creation step prepares a state estimation model for each of the front and rear vehicle halves into which a vehicle is divided, and an abnormality detection step applies a state estimation technique to the state estimation model to detect which one of the air springs has an air supply/exhaust abnormality. When flow rate command values for air supplied to/exhausted from the air springs included in each vehicle half are input, each of the input flow rate command values for air supplied to/exhausted from the air springs is multiplied by a virtual gain and the results are averaged. Based on the averages, the average of the heights of the air springs is output, where each virtual gain is included as a state variable.
申请公布号 US2016236696(A1) 申请公布日期 2016.08.18
申请号 US201415026262 申请日期 2014.10.02
申请人 NIPPON STEEL & SUMITOMO METAL CORPORATION 发明人 YAMAO Hitoshi;SHINAGAWA Daisuke
分类号 B61F5/10;B61F99/00 主分类号 B61F5/10
代理机构 代理人
主权项 1. An abnormality detection method for a vehicle body tilt control device provided on a vehicle having a vehicle body, a pair of bogies located toward a front and a rear of the vehicle body and a pair of air springs located to a left and right of each bogie and supporting the vehicle body, the vehicle body tilt control device controlling supply/exhaust to/from the air springs to tilt the vehicle body, the abnormality detection method comprising the steps of: preparing a state estimation model for each of the bogies; and using the state estimation model to detect which one of the air springs has an air supply/exhaust abnormality, wherein the state estimation model is a mathematical model that, when a first flow rate command value indicating a flow rate of air supplied to/exhausted from one air spring is input, multiplies the first flow rate command value by a first virtual gain that is a state variable, when a second flow rate command value indicating a flow rate of air supplied to/exhausted from the other air spring is input, multiplies the second flow rate command value by a second virtual gain that is a state variable, and outputs an average of heights of the air springs based on an average of the first flow rate command value multiplied by the first virtual gain and the second flow rate command value multiplied by the second virtual gain, wherein the step of detecting an abnormality includes the steps of: estimating a value of the first virtual gain and a value of the second virtual gain by using, as a value output by the state estimation model, an average of a value obtained by observing a height of the one air spring when supply/exhaust is controlled based on the first flow rate command value and a value obtained by observing a height of the other air spring when supply/exhaust is controlled based on the second flow rate command value; and determining that there is an abnormality in the supply/exhaust for the one air spring when the estimated value of the first virtual gain is below a predetermined threshold and determining that there is an abnormality in the supply/exhaust for the other air spring when the estimated value of the second virtual gain is below the predetermined threshold.
地址 Tokyo JP