发明名称 LIGHT SOURCE DEVICE AND PROJECTOR
摘要 To avoid accelerated progression of deterioration of a semiconductor laser, an LED, and the like to extend their lives while adjusting a balance of a plurality of colors, such as R, G, and B, by feedback control, a deterioration controllable monochromatic light source module is configured to: calculate a substantial upper limit Iu, determine an operation coefficient hx based on a deterioration coefficient dx, perform feedback control of the output current Ix of each drive circuit, and output a light intensity detection signal to the outside. An integrating control circuit calculates a monochromatic light intensity sum σ by a sum of light intensity detection signals from the monochromatic light source modules belonging to the same wavelength band and determines a light intensity target signal so that a ratio of the monochromatic light intensity sum σ to the monochromatic light source modules in different wavelength bands is a predetermined ratio.
申请公布号 US2016255313(A1) 申请公布日期 2016.09.01
申请号 US201415029427 申请日期 2014.09.19
申请人 USHIO DENKI KABUSHIKI KAISHA 发明人 SAMEJIMA Takanori;ODA Fumihiko;OKAMOTO Masashi
分类号 H04N9/31;H01S5/0687;H01S5/042 主分类号 H04N9/31
代理机构 代理人
主权项 1. A light source device emitting radiation luminous fluxes (F, F′, F″, . . . ) in a plurality of wavelength bands to the outside, a deterioration controllable monochromatic light source module (Up), which has light emitting elements (Y1, Y2, . . . ) each emitting light in a specific wavelength band and emits radiation luminous fluxes (F) from the light emitting elements to the outside, further having drive circuits (P1, P2, . . . ) driving the light emitting elements (Y1, Y2, . . . ), a light emission control circuit (Mp) controlling the drive circuits (P1, P2, . . . ), and light intensity detection means (A) detecting a light intensity of the radiation luminous flux (F) to generate a light intensity detection signal (Se) and transmitting the light intensity detection signal (Se) to the light emission control circuit (Mp), the light emission control circuit (Mp) being configured to, in order to calculate, with respect to an absolute upper limit Im specified by an output current Ix of each of the drive circuits (P1, P2, . . . ), calculate an substantial upper limit Iu, that is a limit value that can be output at that time point, with respect to each of the drive circuits (P1, P2, . . . ), determine an operation coefficient hx of each of the drive circuits (P1, P2, . . . ) to be multiplied with the absolute upper limit Im, based on a deterioration coefficient dx representing a degree of deterioration of each of the light emitting elements (Y1, Y2, . . . ) at that time point, perform feedback control of the output current Ix of each of the drive circuits (P1, P2, . . . ) in a range where the output current Ix does not exceed the substantial upper limit Iu so that the light intensity detection signal (Se) matches a light intensity target signal (Sp) which is a target value thereof and is input from the outside, and output the light intensity detection signal (Se) to the outside, and the light source device comprising the deterioration controllable monochromatic light source module (Up), one or more monochromatic light source modules (Up′, Up″, . . . ), which have a light emitting element to emit the radiation luminous fluxes (F, F′, F″, . . . ) to the outside, output light intensity detection signals (Se′, Se″, . . . ), generated by detecting the light intensities of the radiation luminous fluxes (F′, F″, . . . ), to the outside, performs feedback control of a light emitting element drive circuit so that the light intensity detection signal (Se′, Se″, . . . ) matches a light intensity target signals (Sp′, Sp″, . . . ) which is a target value thereof and is input from the outside, and is different from the deterioration controllable monochromatic light source module (Up), and an integrating control circuit (Mu) which inputs the light intensity detecting signals (Se, Se′, Se″, . . . ) and, at the same time, generates the light intensity target signals (Sp, Sp′, Sp″, . . . ) to output the light intensity target signals (Sp, Sp′, Sp″, . . . ), wherein the integrating control circuit (Mu) calculates a monochromatic light intensity sum σ by a sum of the light intensity detection signals from the monochromatic light source modules belonging to the same wavelength band, among the light intensity detection signals (Se, Se′, Se″, . . . ) and determines the light intensity target signals (Sp, Sp′, Sp″, . . . ) so that a ratio of the monochromatic light intensity sum σ to the monochromatic light source modules in different wavelength bands is a predetermined ratio.
地址 Tokyo JP