发明名称 Method and Equipment Based on Multi-Core Fiber Bragg Grating Probe for Measuring Structures of a Micro Part
摘要 A method and equipment based on multi-core fiber Bragg grating (FBG) probe for measuring structures of a micro part are provided. The provided method relates to how to accomplish measuring structures of a micro part by transforming two or three-dimensional contact displacements into spectrum shifts of the multi-core FBG probe, and to reconstruct the structure geometry of a micro part. The provided equipment can be used to bring the spherical tip of the multi-core FBG probe into contact with a micro part, to determine coordinates of contact points, and to reconstruct the structure geometry of a micro part. The provided method and equipment feature high sensitivity, low probing force, high inspecting aspect ratio and immunity to environment interference.
申请公布号 US2016334203(A1) 申请公布日期 2016.11.17
申请号 US201415112179 申请日期 2014.12.25
申请人 HARBIN INSTITUTE OF TECHNOLOGY 发明人 CUI JIWEN;FENG KUNPENG;LI JUNYING;TAN JIUBIN
分类号 G01B11/00;G01D5/353;G01B5/012 主分类号 G01B11/00
代理机构 代理人
主权项 1. A method based on multi-core FBG probe for measuring structures of a micro part includes following steps: Step 1. Providing a multi-core FBG probe, which comprises a spherical tip and a multi-core fiber stylus inscribed FBGs in its cores; the multi-core fiber stylus, cantilevered at one end and with the spherical tip fixed on the other, serves as the multi-core FBG probe; the multi-core fiber utilized to fabricate the multi-core fiber stylus should have one or more cores located out of the center of the multi-core fiber; Step 2. Providing a photoelectric probing system, which consists of the multi-core FBG probe mentioned in step 1, an optical path for the operation of the multi-core FBG probe, and an interrogation unit (consisting of a demodulation unit and a signal processing unit) for detecting and processing the sensing signal of the multi-core FBG probe; when a micro part is measured, the spherical tip of the multi-core FBG probe is brought into contact with a micro part and the spectra of FBGs comprised in the multi-core fiber stylus shift accordingly; the optical path supplies the multi-core FBG probe with energy and ensures the sensing signal containing spectrum shifts of FBGs in the multi-core fiber stylus and the reference FBG can reach the interrogation unit; the interrogation unit detects the sensing signal, transforms it into spectrum shifts of FBGs, and then calculates contact displacements of the spherical tip of the multi-core FBG probe relative to its zero-force position; Step 3. Combining the photoelectric probing system mentioned in step 2 with a coordinate measuring instrument system to form an equipment based on multi-core FBG probe for measuring structures of a micro part, contact displacements of the spherical tip of the multi-core FBG probe and coordinates of the multi-core FBG probe relative to the coordinate measuring instrument system are acquired in real time and are processed by a measurement computer, wherein coordinates of contact points can be calculated from coordinates of the multi-core FBG probe relative to the coordinate measuring instrument system and contact displacements of the spherical tip of the multi-core FBG probe relative to its zero-force position measured directly using the photoelectric probing system; Step 4. A micro part measured is fastened to a measurement table of the equipment based on multi-core FBG probe for measuring structures of a micro part mentioned in step 3; the motion of the measurement table and the multi-core FBG probe fixed on the sleeve of the equipment is controlled by manual operation or a measurement program; relative motion between the multi-core FBG probe and a micro part occurs and the motion track is accurately designed to bring the spherical tip of the multi-core FBG probe into contact with a certain point of a micro part, coordinates of a contact point can be calculated in the measurement computer mentioned in step 3; Step 5. Repeat the measurement process in step 4 to obtain coordinates of more contact points and the structure geometry of a micro part measured can be reconstructed from coordinates of these contact points.
地址 Harbin, Heilongjiang CN