发明名称 Workpiece cutting method
摘要 The object cutting method comprises a step of locating a converging point of laser light within a monocrystal sapphire substrate, while using a rear face of the monocrystal sapphire substrate as an entrance surface of the laser light, and relatively moving the converging point along each of a plurality of lines to cut set parallel to the m-plane and rear face of the substrate, so as to form first and second modified regions within the substrate along each line and cause a fracture to reach a front face. In this step, in each line, with respect to a tilted surface passing the first region while being parallel to the r-plane of the substrate, the second region is positioned on the side where the tilted surface and rear face form an acute angle.
申请公布号 US9478696(B2) 申请公布日期 2016.10.25
申请号 US201314422372 申请日期 2013.08.01
申请人 HAMAMATSU PHOTONICS K.K. 发明人 Tajikara Yoko;Yamada Takeshi
分类号 H01L33/00;B23K26/00;H01L33/48 主分类号 H01L33/00
代理机构 Drinker Biddle & Reath LLP 代理人 Drinker Biddle & Reath LLP
主权项 1. An object cutting method for manufacturing a plurality of light-emitting elements by cutting an object to be processed, comprising a monocrystal sapphire substrate having front and rear faces forming an angle corresponding to an off-angle with c-plane and an element layer including a plurality of light-emitting element parts arranged in a matrix on the front face, with respect to each of the light-emitting element parts, the method comprising: a first step of locating a converging point of laser light at a position separated by a first distance from the rear face within the monocrystal sapphire substrate, while using the rear face as an entrance surface of laser light in the monocrystal sapphire substrate, and relatively moving the converging point along each of a plurality of first lines to cut set parallel to m-plane of the monocrystal sapphire substrate and the rear face, so as to form first modified regions within the monocrystal sapphire substrate along each of the first lines, and locating the converging point at a position separated by a second distance shorter than the first distance from the rear face within the monocrystal sapphire substrate, while using the rear face as the entrance surface of laser light in the monocrystal sapphire substrate, and relatively moving the converging point along each of the first lines, so as to form second modified regions within the monocrystal sapphire substrate along each of the first lines; and a second step of exerting an external force on the object along each of the first lines after the first step, so as to extend a first fracture occurring from the first modified regions and a second fracture occurring from the second modified regions, thereby cutting the object along each of the first lines; wherein, in the first step, when seen in a direction parallel to the first lines, with respect to a tilted surface passing the first modified regions while being parallel to r-plane of the monocrystal sapphire substrate, the second modified regions are positioned on a region on one side with respect to each of the first lines and on the one side with respect to the first modified regions, assuming that a side where the tilted surface and rear face form an acute angle is the one side while a side where the tilted surface and rear face form an obtuse angle is the other side.
地址 Hamamatsu-shi, Shizuoka JP