发明名称 Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
摘要 Provided herein are devices, systems, and methods of employing the same for the performance of bioinformatics analysis. The apparatuses and methods of the disclosure are directed in part to large scale graphene FET sensors, arrays, and integrated circuits employing the same for analyte measurements. The present GFET sensors, arrays, and integrated circuits may be fabricated using conventional CMOS processing techniques based on improved GFET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense GFET sensor based arrays. Improved fabrication techniques employing graphene as a reaction layer provide for rapid data acquisition from small sensors to large and dense arrays of sensors. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes, including DNA hybridization and/or sequencing reactions. Accordingly, GFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis within a gated reaction chamber of the GFET based sensor.
申请公布号 US9618474(B2) 申请公布日期 2017.04.11
申请号 US201615065744 申请日期 2016.03.09
申请人 Edico Genome, Inc. 发明人 van Rooyen Pieter;Lerner Mitchell;Hoffman Paul
分类号 H01L29/66;G01N27/414;C12Q1/68;B01L3/00;H01L29/16;H01L27/085;H01L29/10;H01L29/24 主分类号 H01L29/66
代理机构 Mintz Levin Cohn Ferris Glovsky and Popeo, P.C. 代理人 Mintz Levin Cohn Ferris Glovsky and Popeo, P.C.
主权项 1. An integrated circuit for performing a sequencing reaction, the sequencing reaction involving the sequencing of strands of nucleic acids, the integrated circuit comprising: a substrate; an array of graphene field effect transistors arranged on the substrate, each of the graphene field effect transistors comprising: a primary layer forming a base layer;a secondary layer over the primary layer, the secondary layer being formed of a first nonconductive material and comprising a source and a drain formed in the first nonconductive material, the source and drain being separated one from the other by a channel, the source and the drain being formed of an electrically conductive material; anda tertiary layer over the secondary layer, the tertiary layer comprising a gate formed over the channel to electrically connect the source and the drain, the channel being formed of a graphene layer, the tertiary layer further comprising a surface structure that overlaps the source and the drain in the secondary layer, the surface structure further defining a well having side walls and a bottom that extends over at least a portion of the graphene layer of the channel so as to form a reaction chamber for the performance of the sequencing reaction; and a chemically-sensitive bead provided in one or more wells of the array of graphene field effect transistors, each chemically-sensitive bead being configured with one or more reactants to interact with portions of the strands of nucleic acids such that the associated graphene field effect transistor detects a change in ion concentration of the reactants by a change in current flow from the source to the drain via an activation of the graphene layer.
地址 La Jolla CA US