发明名称 CYLINDER-BY-CYLINDER AIR-FUEL RATIO CONTROLLER FOR INTERNAL COMBUSTION ENGINE
摘要 When executing a Local-learning, an air-fuel ratio detecting time is corrected so that a dispersion of detection values of an air-fuel ratio sensor becomes a maximum value in one cycle of an engine. While executing a cylinder-by-cylinder air-fuel ratio control, a Global-learning is executed. In the Global-learning, the air-fuel ratio detecting time is corrected based on a relationship between a variation in estimated air fuel ratio of each cylinder and a variation in fuel quantity correction value of each cylinder. In the Global-learning, a computer computes a correlation coefficient between the variation in estimated air-fuel ratio and the variation in fuel quantity correction value of the cylinder for each case where the cylinder assumed to correspond to the estimated air fuel ratio is hypothetically varied in multiple ways. Then, the air-fuel ratio detecting time is corrected so that this correlation coefficient becomes a maximum value.
申请公布号 US2017089277(A1) 申请公布日期 2017.03.30
申请号 US201615372807 申请日期 2016.12.08
申请人 DENSO CORPORATION 发明人 KAWAKATSU Yasuhiro;IWASE Noriaki
分类号 F02D41/00;F02D41/26;F02D41/14 主分类号 F02D41/00
代理机构 代理人
主权项 1. A cylinder-by-cylinder air-fuel ratio controller for an internal combustion engine that is provided with an air-fuel ratio sensor detecting an air-fuel ratio of an exhaust gas at a confluent portion into which the exhaust gas flows from multiple cylinders of the internal combustion engine; a cylinder-by-cylinder air-fuel-ratio estimation portion estimating the air-fuel ratio of each cylinder based on a detection value which the air-fuel ratio sensor detects at an air-fuel ratio detecting time for each cylinder; and a cylinder-by-cylinder air-fuel ratio control portion executing a cylinder-by-cylinder air-fuel ratio control in which the air-fuel ratio of each cylinder is adjusted based on the estimated air-fuel ratio of each cylinder, the cylinder-by-cylinder air-fuel ratio controller comprising: a first time-correction portion correcting the air-fuel ratio detecting time in such a manner that a dispersion of the detection values of the air fuel ratio sensor becomes maximum in one cycle of the internal combustion engine; and a second time-correction portion correcting the air-fuel ratio detecting time based on a relationship between a variation in estimated air-fuel ratio of at least one cylinder and a variation in correction value of said cylinder; wherein: the second time-correction portion computes a correlation coefficient between the variation in estimated air-fuel ratio and the variation in correction value of the cylinder with respect to at least one of the cylinders for each case where the cylinder assumed to correspond to the estimated air fuel ratio is hypothetically varied in multiple ways; and the second time-correction portion corrects the air-fuel ratio detecting time so that the correlation coefficient becomes a maximum value.
地址 Kariya-city JP