发明名称 SPATIAL POSITIONING OF PHOTON EMITTERS IN A PLASMONIC ILLUMINATION DEVICE
摘要 There is provided an illumination device (100) comprising: a substrate (104); an optically transmissive first layer (106) arranged on the substrate; a photon emitting layer (108), arranged on the optically transmissive first layer and comprising a photon emitting material configured to receive energy from an energy source and to emit light having a predetermined wavelength; a periodic plasmonic antenna array, arranged on the substrate and embedded within the first layer, and comprising a plurality of individual antenna elements (114) arranged in an antenna array plane, the plasmonic antenna array being configured to support a first lattice resonance at the predetermined wavelength, arising from coupling of localized surface plasmon resonances in the individual antenna elements to photonic modes supported by the system comprising the plasmonic antenna array and the photon emitting layer, wherein the plasmonic antenna array is configured to comprise plasmon resonance modes such that light emitted from the plasmonic antenna array has an anisotropic angle distribution; and wherein the photon emitting layer is arranged at a distance from the antenna array plane corresponding to a location of maximum field enhancement for light out-coupling resulting from the plasmonic-photonic lattice resonances.
申请公布号 US2017082785(A1) 申请公布日期 2017.03.23
申请号 US201515312297 申请日期 2015.05.21
申请人 KONINKLIJKE PHILIPS N.V. 发明人 Verschuuren Marcus Antonius;Lozano Barbero Gabriel Sebastian;Gomez Rivas Jaime
分类号 G02B5/00;F21V9/16;F21K9/64 主分类号 G02B5/00
代理机构 代理人
主权项 1. An illumination device comprising: a substrate; an optically transmissive first layer arranged on the substrate; a photon emitting layer, arranged on the optically transmissive first layer and comprising a photon emitting material configured to receive energy from an energy source and to emit light having a predetermined wavelength; a periodic plasmonic antenna array, arranged on the substrate and embedded within the first layer, and comprising a plurality of individual antenna elements arranged in an antenna array plane, the plasmonic antenna array being configured to support a first lattice resonance at the predetermined wavelength, arising from coupling of localized surface plasmon resonances in the individual antenna elements to at least one photonic resonance mode by combining the plasmonic antenna array and the photon emitting layer, wherein the plasmonic antenna array is configured to comprise plasmon resonance modes such that light emitted from the plasmonic antenna array has an anisotropic angle distribution; and wherein the photon emitting layer is arranged at a distance from the antenna array plane corresponding to a location of maximum field enhancement for light out-coupling resulting from plasmonic-photonic lattice resonances.
地址 Eindhoven NL