发明名称 Scan driving circuit for oxide semiconductor thin film transistors
摘要 The present invention provides a scan driving circuit for oxide semiconductor thin film transistors, a pull-down holding circuit part (600) employed of the circuit comprises a first pull-down holding module (601) and a second pull-down holding module (602) which is capable of extending the lifetime of the circuit; the first pull-down holding module (601) comprises a first main inverter and a first auxiliary inverter with introducing a constant low voltage level (DCL); the second pull-down holding module (602) comprises a second main inverter and a second auxiliary inverter with introducing a constant low voltage level (DCL); setting the constant low voltage level (DCL)<the second negative voltage level (VSS2)<the first negative voltage level (VSS1), the influence of electrical property of the oxide semiconductor thin film transistors to the scan driving circuit, particularly the bad function due to the electric leakage issue, can be prevented to ensure that the pull-down holding circuit part (600) can be normally pulled down in the functioning period and at higher voltage level in a non-functioning period to effectively maintain the first node (Q(N)) and the output end (G(N)) at low voltage level.
申请公布号 US9552790(B2) 申请公布日期 2017.01.24
申请号 US201514424399 申请日期 2015.02.06
申请人 Shenzhen China Star Optoelectronics Technology Co., Ltd 发明人 Dai Chao
分类号 G09G3/36 主分类号 G09G3/36
代理机构 代理人 Cheng Andrew C.
主权项 1. A scan driving circuit for oxide semiconductor thin film transistors, comprising: a plurality of GOA (Gate Drive On Array) units which are cascade connected, and N is set to be a positive integer and the Nth GOA unit comprises a pull-up control part, a pull-up part, a transfer part, a first pull-down part, a bootstrap capacitor part and a pull-down holding part; the pull-up control part comprises an eleventh transistor, and a gate of the eleventh transistor is electrically coupled to a driving output end of a N−1th GOA unit which is the former stage of the Nth GOA unit, and a drain is electrically coupled to an output end of the N−1th GOA unit which is the former stage of the Nth GOA unit, and a source is electrically coupled to a first node; the first pull-down part comprises a forty-first transistor, and a gate of the forty-first transistor is electrically coupled to a M+2 set clock signal, and a drain is electrically coupled to the first node, and a source is electrically coupled to a second negative voltage level or an output end; the pull-down holding part comprises: a first pull-down holding module and a second pull-down holding module, and the first pull-down holding module and the second pull-down holding module alternately work; the first pull-down holding module comprises a fifty-first transistor, and both a gate and a drain of the fifty-first transistor are electrically coupled to a first low frequency clock signal source, and a source is electrically coupled to a sixth node; a fifty-second transistor, and a gate of the fifty-second transistor is electrically coupled to the first node, and a drain is electrically coupled to the sixth node, and a source is electrically coupled to a first negative voltage level; a fifty-third transistor, and a gate of the fifty-third transistor is electrically coupled to the sixth node, and a drain is electrically coupled to the first low frequency clock signal source, and a source is electrically coupled to a second node; a fifty-fourth transistor, and a gate of the fifty-fourth transistor is electrically coupled to the first node, and a drain is electrically coupled to the second node, and a source is electrically coupled to a third node; a seventy-third transistor and a gate of the seventy-third transistor is electrically coupled to the sixth node and a drain is electrically coupled to the first low frequency clock signal source, and a source is electrically coupled to the third node; a seventy-fourth transistor and a gate of the seventy-fourth transistor is electrically coupled to the first node, and a drain is electrically coupled to the third node, and a source is electrically coupled to a constant low voltage level; a forty-second transistor, and a gate the forty-second transistor is electrically coupled to the second node, and drain is electrically coupled to the first node, and a source is electrically coupled to the second negative voltage level; a thirty-second transistor, and a gate of the thirty-second transistor is electrically coupled to the second node, and a drain electrically coupled to the output end, and a source is electrically coupled to the first negative voltage level; the fifty-first transistor, the fifty-second transistor, the fifty-third transistor the fifty-fourth transistor construct a first main inverter, and the first main inverter is employed to control the thirty-second transistor and the forty-second transistor; the seventy-third transistor and the seventy-fourth transistor construct a first auxiliary inverter, and the first auxiliary inverter is employed to provide low voltage level to the first main inverter in a functioning period, and a high voltage level to the first main inverter in a non-functioning period; the second pull-down holding module comprises a sixty-first transistor, and both a gate and a drain of the sixty-first transistor are electrically coupled a second low frequency clock signal source, and a source is electrically coupled to a seventh node; a sixty-second transistor, and a gate of the sixty-second transistor is electrically coupled to the first node, and a drain is electrically coupled to the seventh node, and a source is electrically coupled to a first negative voltage level; a sixty-third transistor, and a gate of the sixty-third transistor is electrically coupled to the seventh node, and a drain is electrically coupled to the second low frequency clock signal source, and a source electrically coupled to the fourth node; a sixty-fourth transistor, and a gate of the sixty-fourth transistor is electrically coupled to the first node, and a drain is electrically coupled to the fourth node, and a source is electrically coupled to a fifth node; a eighty-third transistor, and a gate of the eighty-third transistor is electrically coupled to the seventh node, and a drain is electrically coupled to the second low frequency clock signal source, and a source is electrically coupled to the fifth node; a eighty-fourth transistor, and a gate of the eighty-fourth transistor is electrically coupled to the first node, and a drain is electrically coupled to the fifth node, and a source is electrically coupled to a constant low voltage level; a forty-third transistor, and a gate of the forty-third transistor is electrically coupled to the fourth node, and a drain is electrically coupled to the first node, and a source is electrically coupled to the second negative voltage level; a thirty-third transistor, and a gate of the thirty-third transistor is electrically coupled to the fourth node, and a drain is electrically coupled to the output end, and a source is electrically coupled to the first negative voltage level; the sixty-first transistor, the sixty-second transistor, the sixty-third transistor, the sixty-fourth transistor construct a second main inverter, and the second main inverter is employed to control the thirty-third transistor and the forty-third transistor; the eighty-third transistor and the eighty-fourth transistor construct a second auxiliary inverter, and the second auxiliary inverter is employed to provide a low voltage level to the second main inverter in a functioning period, and a high voltage level to the second main inverter in a non-functioning period; a relation of the first negative voltage level, the second negative voltage level and the constant low voltage level is: the constant low voltage level<the second negative voltage level<the first negative voltage level.
地址 Shenzhen, Guangdong CN