发明名称 Non-orthogonal six-rod satellite communication in motion servo system and control method
摘要 A non-orthogonal six-rod satellite communication in motion servo system and a control method. The system comprises a measurement feedback unit, a control unit, a drive unit and a servo antenna, wherein the measurement feedback unit further comprises an azimuth angle encoder, a pitch position encoder, a roll position encoder, a polarization angle encoder and a data collection card; the control unit further comprises an ACU, a strapdown inertial measurement unit and a six-axis movement control and drive module; and the drive unit further comprises a linear motor, an azimuth turbine worm, a polarization turbine worm and an electric push rod, wherein the linear motor further comprises a first linear motor and a second linear motor; and the electric push rod further comprises a first electric push rod, a second electric push rod, a third electric push rod and a fourth electric push rod.
申请公布号 US9541913(B2) 申请公布日期 2017.01.10
申请号 US201415108776 申请日期 2014.06.30
申请人 BEIJING AEROSPACE WANDA HI-TECH LTD. 发明人 Shi Junliang;Zhao Shulun;Men Jizhuo;Xin Yi;Chen Yuanhang;Feng Ruixin;Xu Yi
分类号 H04B7/185;G05B19/042;G05B19/04;G05B15/02 主分类号 H04B7/185
代理机构 Fenwick & West LLP 代理人 Fenwick & West LLP
主权项 1. A non-orthogonal six-rod satellite communication in motion servo system, comprising a measurement feedback unit, a control unit, a drive unit and a servo antenna, wherein the measurement feedback unit comprises an azimuth angle coder, a pitch position coder, a roll position coder, a polarization angle coder and a data collection card; the control unit comprises an assemble control unit (ACU), a strapdown inertial measurement unit and a six-axis movement control and drive module; the drive unit comprises a linear motor, an azimuth turbine worm, a polarization turbine worm and a linear actuator; the linear motor comprises a first linear motor and a second linear motor; the linear actuator comprises a first linear actuator, a second linear actuator, a third linear actuator and a fourth linear actuator; the data collection card is configured to collect azimuth angle information, pitch position information, roll position information and polarization angle information from the azimuth angle coder, the pitch position coder, the roll position coder and the polarization angle coder respectively, and send the azimuth angle information, the pitch position information, the roll position information and the polarization angle information to the ACU and the strapdown inertial measurement unit; the ACU is configured to receive, in a real-time manner, the azimuth angle information, the pitch position information, the roll position information and the polarization angle information collected by the data collection card, convert the pitch position information and the roll position information into pitch angle information and roll angle information respectively, and use the azimuth angle information, the pitch angle information, the roll angle information and the polarization angle information for user monitoring; the ACU is configured to power the strapdown inertial measurement unit, and send a control instruction to the strapdown inertial measurement unit, wherein the control instruction comprises a name of a satellite, a longitude parameter, a polarization mode, a beacon frequency, a satellite aiming time and a satellite aiming manner; the ACU is configured to read, via data interaction, system attitude information sent from the strapdown inertial measurement unit to determine whether the strapdown inertial measurement unit is in a normal operation state; the strapdown inertial measurement unit is configured to measure attitude information in a real-time manner, perform coordinate-conversion on the obtained attitude information, receive, in a real-time manner, the azimuth angle information, the pitch position information, the roll position information and the polarization angle information collected by the data collection card, convert the pitch position information and the roll position information into pitch angle information and roll angle information respectively, and compare the azimuth angle information, the pitch angle information, the roll angle information and the polarization angle information with the attitude information obtained after the coordinate-conversion; the strapdown inertial measurement unit is configured to find out, based on the name of the satellite, the longitude parameter, the polarization mode and the beacon frequency contained in the control instruction sent from the ACU, a position for satellite aiming, convert the angular comparison result into a pulse signal within the specified satellite aiming time in the satellite aiming manner sent from the ACU, and send the pulse signal to the six-axis movement control and drive module for satellite aiming; the six-axis movement control and drive module is configured to perform satellite aiming based on the pulse signal sent from the strapdown inertial measurement unit, wherein the satellite aiming is performed as follows: the six-axis movement control and drive module outputs six channels of control and drive signals; a first channel of the control and drive signals is output to the first linear motor, and the first linear motor pushes the azimuth turbine worm to conduct azimuth rotation, to push the servo antenna to conduct azimuth rotation; a second channel and a third channel of the control and drive signals are output to the first linear actuator and the second linear actuator respectively, and the first linear actuator and the second linear actuator push the servo antenna to conduct pitch rotation at a certain angle; a fourth channel and a fifth channel of the control and drive signals are output to the third linear actuator and the fourth linear actuator respectively, and the third linear actuator and the fourth linear actuator push the servo antenna to conduct roll rotation at a certain angle; a sixth channel of the control and drive signals is output to the second linear motor, and the second linear motor pushes the polarization turbine worm to conduct polarization rotation at a certain angle; and the azimuth rotation, the pitch rotation, the roll rotation and the polarization rotation are independent from each other to form four degrees of freedom in space; and the azimuth angle coder, the pitch position coder, the roll position coder and the polarization angle coder acquire azimuth angle information, pitch position information, roll position information and polarization angle information during the azimuth rotation, the pitch rotation, the roll rotation and the polarization rotation in a real-time manner.
地址 Beijing CN