发明名称 FUEL CELL
摘要 In a fuel cell, a cathode passage extends from an oxidizing gas supply hole to an oxidizing gas discharge hole. A turn interval at which a flow direction of an oxidizing gas returns to an original direction in an upstream-side passage region is different from the turn interval in a downstream-side passage region. A ratio between the turn interval in the upstream-side passage region and the turn interval in the downstream-side passage region is set to 1.1:1 to 3:1. The upstream-side passage region is overlapped with a most downstream-side passage portion of an anode passage with a membrane electrode assembly interposed between the upstream-side passage region and the most downstream-side passage portion.
申请公布号 US2016141639(A1) 申请公布日期 2016.05.19
申请号 US201514939061 申请日期 2015.11.12
申请人 TOYOTA JIDOSHA KABUSHIKI KAISHA 发明人 NAKAJI Hiroya;TAKESHITA Naohiro;KUBO Hideki;KONDO Takashi;MIZUNO Seiji;KONNO Norishige
分类号 H01M8/02;H01M8/04;H01M8/10 主分类号 H01M8/02
代理机构 代理人
主权项 1. A fuel cell comprising: a membrane electrode assembly including an electrolyte membrane and electrodes joined to membrane surfaces of the electrolyte membrane; an anode-side passage formation portion having a fuel gas supply hole and a fuel gas discharge hole and forming an anode passage that supplies a fuel gas to one of the electrodes of the membrane electrode assembly, as a serpentine passage in which a flow direction of the fuel gas is reversed a plurality of times, the anode passage extending from the fuel gas supply hole to the fuel gas discharge hole; and a cathode-side passage formation portion having an oxidizing gas supply hole and an oxidizing gas discharge hole and forming a cathode passage that diffuses an oxidizing gas and supplies the oxidizing gas to another electrode of the membrane electrode assembly, as a mesh-shaped passage, the cathode passage extending from the oxidizing gas supply hole to the oxidizing gas discharge hole, wherein: the cathode-side passage formation portion includes a plurality of passage forming element rows that are consecutively provided from the oxidizing gas supply hole to the oxidizing gas discharge hole along a first direction extending from the oxidizing gas supply hole to the oxidizing gas discharge hole; each of the passage forming element rows is formed by consecutively providing a plurality of passage forming elements along a second direction intersecting with the first direction; the plurality of passage forming element rows are consecutively provided such that a flow direction of the oxidizing gas flowing in the cathode passage serving as the mesh-shaped passage extends in a first inclination direction and a second inclination direction in every predetermined number of the passage forming element rows, the predetermined number being an integer of 2 or more; the first inclination direction is inclined to one side relative to the first direction, the second inclination direction is inclined to another side relative to the first direction, and the first inclination direction and the second inclination direction are symmetrical with respect to the first direction; a turn interval at which the flow direction of the oxidizing gas returns to an original direction in an upstream-side passage region on a side of the oxidizing gas supply hole is made different from the turn interval in a downstream-side passage region on a side of the oxidizing gas discharge hole by making the predetermined number in the upstream-side passage region different from the predetermined number in the downstream-side passage region; a ratio between the turn interval in the upstream-side passage region and the turn interval in the downstream-side passage region is set to 1.1:1 to 3:1; and the upstream-side passage region is overlapped with a most downstream-side passage portion of the anode passage serving as the serpentine passage formed by the anode-side passage formation portion with the membrane electrode assembly interposed between the upstream-side passage region and the most downstream-side passage portion.
地址 Toyota-shi JP