发明名称 DIFFUSION BARRIER LAYER FORMATION
摘要 A method of forming a titanium nitride (TiN) diffusion barrier includes exposing a deposition surface to a first pulse of a titanium-containing precursor and to a first pulse of a nitrogen-rich plasma to form a first TiN layer with a first nitrogen concentration making a lower portion of the TiN diffusion barrier, the first nitrogen concentration of the first TiN layer is increased by the first pulse of the nitrogen-rich plasma reducing a reactivity of the lower portion of the TiN diffusion barrier to prevent fluorine diffusion. The first TiN layer is exposed to second pulses of the titanium-containing precursor and the nitrogen-rich plasma to form a second TiN layer with a second nitrogen concentration above the first TiN layer making an upper portion of the TiN diffusion barrier, the first pulse of the nitrogen-rich plasma has a substantially longer duration than the second pulse of the nitrogen-rich plasma.
申请公布号 US2016093526(A1) 申请公布日期 2016.03.31
申请号 US201414501137 申请日期 2014.09.30
申请人 International Business Machines Corporation 发明人 Engel Brett H.;Ferrer Domingo A.;Vijayakumar Arun;Wong Keith Kwong Hon
分类号 H01L21/768;H01L21/285 主分类号 H01L21/768
代理机构 代理人
主权项 1. A method of forming a titanium nitride diffusion barrier, the method comprising: exposing a deposition surface to a first pulse of a titanium-containing precursor gas to initiate a nucleation of the titanium nitride diffusion barrier in the deposition surface, wherein the deposition surface comprises sidewalls and a bottom of a contact opening; exposing the deposition surface to a first pulse of a nitrogen-rich plasma to form a first titanium nitride layer with a first nitrogen concentration in the deposition surface, the first titanium nitride layer comprises a lower portion of the titanium nitride diffusion barrier, wherein the first nitrogen concentration of the first titanium nitride layer is substantially increased by the first pulse of the nitrogen-rich plasma, the increased nitrogen concentration of the first titanium nitride layer lowers a reactivity of the lower portion of the titanium nitride diffusion barrier to prevent fluorine diffusion; exposing the first titanium nitride layer to a second pulse of the titanium-containing precursor gas to continue the nucleation of the titanium nitride diffusion barrier; and exposing the first titanium nitride layer to a second pulse of the nitrogen-rich plasma to form a second titanium nitride layer with a second nitrogen concentration directly above and in contact with the first titanium nitride layer, the second titanium nitride layer comprises an upper portion of the titanium nitride diffusion barrier, wherein the first pulse of the nitrogen-rich plasma has a substantially longer duration than the second pulse of the nitrogen rich plasma, wherein the titanium nitride diffusion barrier comprises the first and the second titanium nitride layers.
地址 Armonk NY US