发明名称 WEATHER AND SATELLITE MODEL FOR ESTIMATING SOLAR IRRADIANCE
摘要 Solar irradiance, the energy from the Sun's electromagnetic radiation, has a wide range of applications from meteorology to agronomy to solar power. Solar irradiance is primarily determined by a location's spatial relationship with the Sun and the atmospheric conditions that impact the transmission of the radiation. The spatial relationship between the Sun and a location on Earth is determined by established astronomical formulas. The impact of atmospheric conditions may be estimated via proxy using pixels from satellite imagery. While satellite-based irradiance estimation has proven effective, availability of the input data can be limited and the resolution is often incapable of capturing local weather phenomena. Brief qualitative descriptions of general atmospheric conditions are widely available from internet weather services at higher granularity than satellite imagery. This methodology provides logic for quantifying the impact of qualitative weather observations upon solar irradiance, and the integration of this methodology into solar irradiance estimation models.
申请公布号 US2016026740(A1) 申请公布日期 2016.01.28
申请号 US201514791312 申请日期 2015.07.03
申请人 Locus Energy, Inc. 发明人 Herzig Michael;Williams Matthew;Kerrigan Shawn
分类号 G06F17/50 主分类号 G06F17/50
代理机构 代理人
主权项 1. A computer implemented weather and satellite based method of estimating solar irradiance, the method comprising: accepting a text description of a weather condition for a given time in a computing system; classifying by a computing system the text description of a weather condition for a given time into a classification string according to the text description of a weather condition for a given time by a computing system; providing, in a computing system, a dummy variable representing the respective classification string match; providing a coefficient for each dummy variable in a computing system; accepting in a computing system a theoretical clear sky global horizontal irradiance, a coefficient for temperature, ambient temperature and a dew point; subtracting the dew point from the temperature to provide a Cloud Formation Level (CFL) value in a computing system; providing a coefficient for the CFL; determining an estimated global horizontal irradiance by a computing system, wherein the estimated global horizontal irradiance is the theoretical clear sky global horizontal irradiance multiplied by the total of the sum of the series of coefficients for respective dummy variables multiplied by the dummy variable representing the respective classification string match added to the coefficient for temperature multiplied by the ambient temperature added to the CFL multiplied by a coefficient for the CFL added to a cloud index multiplied by a coefficient for a cloud index added to the total of the sum of the series of coefficients for respective brightness temperature multiplied by the brightness temperature.
地址 Hoboken NJ US