发明名称 High voltage MOSFET devices and methods of making the devices
摘要 A SiC MOSFET device having low specific on resistance is described. The device has N+, P-well and JFET regions extended in one direction (Y-direction) and P+ and source contacts extended in an orthogonal direction (X-direction). The polysilicon gate of the device covers the JFET region and is terminated over the P-well region to minimize electric field at the polysilicon gate edge. In use, current flows vertically from the drain contact at the bottom of the structure into the JFET region and then laterally in the X direction through the accumulation region and through the MOSFET channels into the adjacent N+ region. The current flowing out of the channel then flows along the N+ region in the Y-direction and is collected by the source contacts and the final metal. Methods of making the device are also described.
申请公布号 US9214572(B2) 申请公布日期 2015.12.15
申请号 US201414456110 申请日期 2014.08.11
申请人 MONOLITH SEMICONDUCTOR INC. 发明人 Banerjee Sujit;Matocha Kevin;Chatty Kiran
分类号 H01L29/808;H01L21/22;H01L29/06;H01L29/66;H01L29/78;H01L29/47 主分类号 H01L29/808
代理机构 Morris, Manning & Martin, LLP 代理人 Morris, Manning & Martin, LLP ;Raimund Christopher W.
主权项 1. A semiconductor device comprising at least one semiconductor cell, wherein the semiconductor cell comprises: a semiconductor substrate layer of a first conductivity type; optionally, a buffer layer of a semiconductor material of the first conductivity type on the substrate layer; a drift layer of a semiconductor material of the first conductivity type on the buffer layer or on the substrate; a first well region of a semiconductor material of a second conductivity type different than the first conductivity type extending in a Y direction in the drift layer and having first and second ends; a second well region of a semiconductor material of the second conductivity type extending in the Y direction in the drift layer and having first and second ends, wherein the second well region is spaced from the first well region in an X direction perpendicular to the Y direction and wherein the first ends of each of the first and second well regions are connected together in the X direction by regions of semiconductor material of the second conductivity type and the second ends of each of the first and second well regions are connected together in the X direction by regions of semiconductor material of the second conductivity type to form a ring circumscribing a JFET region in the drift layer; a first source region of a semiconductor material of the first conductivity type extending in the Y direction in the first well region, wherein the first source region has a depth less than the depth of the first well region such that there is an underlying portion of the first well region beneath the first source region and wherein the first source region is spaced from the JFET region such that a portion of the first well region remains between the JFET region and the first source region; a second source region of a semiconductor material of the first conductivity type extending in the Y direction in the second well region, wherein the second source region has a depth less than the depth of the second well region such that there is an underlying portion of the second well region beneath the second source region and wherein the second source region is spaced from the JFET region such that a portion of the second well region remains between the JFET region and the second source region; wherein the first and second source regions have first and second ends which extend beyond the JFET region in the Y direction; a first heavily doped region of the second conductivity type extending in the X direction between the first ends of the first and second source regions and contacting the first and second well regions; a second heavily doped region of the second conductivity type extending in the X direction between the second ends of the first and second source regions and spaced from the first heavily doped region in the Y direction and contacting the first and second well regions; a first source ohmic contact extending in the X direction and directly contacting the first heavily doped region and the first ends of the first and second source regions adjacent thereto; a second source ohmic contact extending in the X direction and directly contacting the second heavily doped region and the second ends of the first and second source regions adjacent thereto, wherein the second source ohmic contact is spaced from the first source ohmic contact in the Y direction; a gate dielectric layer on the drift layer and in contact with the first source region and the second source region between the first and second source ohmic contacts; a gate electrode on the first gate dielectric layer, wherein the gate electrode is spaced from the first and second source ohmic contacts in the Y direction; an interlayer dielectric on the gate electrode and on a peripheral portion of the first gate dielectric layer not covered by the gate electrode; and a source metal region in contact with the source ohmic contacts; wherein the gate electrode extends over the first and second source regions in the X direction.
地址 Round Rock TX US