发明名称 Laser Differential Confocal Mapping-Spectrum Microscopic Imaging Method and Device
摘要 The present invention belongs to a technical field of optical microscopic imaging and spectral measurement, and discloses a laser differential confocal mapping-spectrum microscopic imaging method and device. The core concept of the present invention is to combine the differential confocal detection and the spectrum detection techniques and use a dichroic beam splitting system (13) to separate the Rayleigh light for geometric position detection from the Raman scattering light for spectrum detection, by mean of the property that the zero-cross point of the differential confocal curve (43) accurately corresponds to the focus of the objective, the spectral information at focus of the excitation spot being accurately captured by the zero trigger to accomplish the spectrum detection with high spatial resolution. Therefore, the present invention provides a method and device that may be able to accomplish the spectrum detection with high spatial resolution to a micro-area of a sample.
申请公布号 US2015346101(A1) 申请公布日期 2015.12.03
申请号 US201314366266 申请日期 2013.08.08
申请人 ZHAO Weiqian;CUI Han;QIU Lirong;WANG Yun 发明人 ZHAO Weiqian;CUI Han;QIU Lirong;WANG Yun
分类号 G01N21/65;G01N21/47 主分类号 G01N21/65
代理机构 代理人
主权项 1. A laser differential confocal mapping-spectrum microscopic imaging method, comprising: a) after passing through a first beam splitting system and an objective, excitation beam generated by an excitation beam generation system being focused on a measured sample and excited Rayleigh light and Raman scattering light that carries the spectral characteristics of the measured sample, the excited Raman scattering light and the Rayleigh light being recycled to the light path by a system and then be reflected to a dichroic beam splitting system by a first beam splitting system after passing through the objective, after being split by the dichroic beam splitting system, the Raman scattering light and the Rayleigh light being separated from each other, the Rayleigh light being reflected into a differential confocal detection system, while the Raman scattering light being transmitted into a spectrum detection system, and based on the property that the zero-cross point of the differential confocal curve accurately corresponds to the focus of the objective, spectral information at the focus of the excitation spot being accurately captured by zero trigger to accomplish spectrum detection with high spatial resolution; b) when a differential subtraction process is made only to the signal of the received Rayleigh light, the system performing a three-dimensional chromatography imaging with high spatial resolution; when a process is made only to the spectrum signal of the received Raman scattering light, the system performing a spectrum detection; when a process is made to the signals of both the received Rayleigh light and the Raman scattering light, the system performing a micro-area mapping-spectrum chromatography imaging with high spatial resolution that is a “mapping & spectrum in one” with high spatial resolution of geometric position information and spectral information of the measured sample; c) the zero-cross point of the differential confocal curve accurately corresponding to the focus of the objective, so that in the measurement process, the measured sample being accurately and real-time focus-tracked to ensure the measured sample to always be focused during the whole measurement process, thereby restraining the influence of the factors such as environment temperature and vibration on the spectral measurement so as to improve the accuracy of measurement; d) the zero-cross point of the differential confocal curve corresponding to the focus of the measurement objective at which the converging spot and detection area have the smallest size, other position in a linear section corresponding to the out-of-focus area of the objective, and the size of the converging spot in front of or behind the focus within the liner section increasing as the out-of-focus amount increases, in such a manner that the size of the converging spot is controlled by adjusting z-axial out-of-focus amount of the sample and according to the requirement of actual measurement accuracy, thus allowing the size of the detection area of the sample to be controllable.
地址 Beijing CN