发明名称 Space provision system using compression devices for the reallocation of resourced to new technology, brownfield and greenfield developments
摘要 System and method of well space provision for forming a geologic testing space for proving an operation of an unproven downhole apparatus (78, 92), generally referred to as new technology, within an aged geology, during the rig-less abandonment of an aging well to, in use, reallocate operation of said unproven downhole apparatus from unproven to proven operation within a proximally similarly aged geology of said aging well, another aging well (79), a new well (80), or a field of said wells (79, 80) generally referred to as Brownfields and Greenfields, wherein said unproven downhole apparatus comprises a hydrodynamic bearing boring apparatus (1A, 1E, 1BM, 9AA, 92D) or a bore hole piston apparatus (1A, 1AF, 92A-92C, 92E-92G).
申请公布号 US9200504(B2) 申请公布日期 2015.12.01
申请号 US201214131133 申请日期 2012.07.05
申请人 发明人 Tunget Bruce
分类号 E21B49/00;E21B41/00;E21B7/00 主分类号 E21B49/00
代理机构 代理人
主权项 1. A space provision system (10, 10A-10H) for forming a geologic testing space for proving an operation of at least one unproven downhole apparatus (78, 92) within an aged geology, during the rig-less abandonment of an aging well to, in use, reallocate operation of said at least one unproven downhole apparatus from unproven to proven operation within a proximally similarly aged geology of said aging well, another aging well (79), a new well (80), or a field of said wells (79, 80), said space provision system comprising: said at least one unproven downhole apparatus comprising at least one hydrodynamic bearing boring apparatus (1A, 1E, 1BM, 9AA, 92D) or a bore hole piston apparatus (1A, 1AF, 92A-92C, 92E-92G), wherein said at least one unproven downhole apparatus comprises a rig-less bore hole opening member (92) that is driven in part by hydraulics, wherein said rig-less bore hole opening member is further drivable by an explosion, a cable, or combinations thereof, and is deployable through an upper end of said aging well, within one or more conduits having at least an inner bore hole within a wall of at least one concentric surrounding bore that is engagable by said rig-less bore hole opening member during abandonment of a lower end of said aging well, such that said rig-less bore hole opening member opens said inner bore hole axially along, and radially into, said wall of said at least one concentric surrounding bore, wherein debris (91) from said opening of said inner bore is disposed and compressed within said lower end of said aging well for placement of a settable pressure sealing material, wherein the settable pressure sealing material is placed axially above said debris and within said wall of said at least one concentric surrounding bore at said lower end of said aging well to provide a proximal geology above said settable pressure sealing material that is comparable to at least one portion of a geology of said aging well, a geology of said another aging well, a geology of said new well or a geology of said field of wells to form, in use, said geologic testing space, wherein said geologic testing space is usable to empirically measure operating parameters of said at least one unproven downhole apparatus (78, 92), and wherein said geologic testing space comprises said at least one unproven down hole apparatus (78) to provide empirical data for adapting or proving said at least one unproven downhole apparatus to, in use, reallocate operation of said at least one unproven downhole apparatus from unproven to proven operation within said geologic testing space for use within a similar geologic environment of said aging well, said another aging well, said new well, or said field of said wells.
地址