发明名称 SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME
摘要 A p-type base layer is selectively formed on a surface of an n-type drift layer; an n-type source layer is selectively formed on a surface of the p-type base layer; and a p-type contact layer is formed to be in contact with the selectively-formed n-type source layer. A p-type counter layer is formed to be in contact with the n-type source layer, so as to overlap the p-type contact layer, so as to be separated from an interface where the p-type base layer and the gate oxide film are in contact with each other, and to be shallower than the p-type base layer. Accordingly, switching destruction caused by process defects in an insulated gate semiconductor device is reduced.
申请公布号 US2015333146(A1) 申请公布日期 2015.11.19
申请号 US201514736532 申请日期 2015.06.11
申请人 FUJI ELECTRIC CO., LTD. 发明人 ONOZAWA Yuichi;SHIIGI Takashi
分类号 H01L29/66;H01L21/266 主分类号 H01L29/66
代理机构 代理人
主权项 1. A method of manufacturing a semiconductor device comprising: a first process of implanting second conductivity type impurity ions in a first principal plane of a semiconductor substrate with such a range that the contact layer is shallower than a base layer included in the semiconductor device in order to form the contact layer included in the semiconductor device; a second process of implanting first conductivity type impurity ions in the first principal plane with such a range that the source layer is shallower than the contact layer in order to form the source layer included in the semiconductor device after the first process; and a third process of implanting second conductivity type impurity ions in the first principal plane with such a range that a counter layer is deeper than the source layer and shallower than the base layer at a dose which is equal to or larger than 10% of a dose of the ion implantation of the first process in order to form the counter layer included in the semiconductor device after the second process, wherein the semiconductor device comprises: a drift layer which includes a first conductivity type semiconductor substrate; a second conductivity type base layer which is selectively formed on a surface of a first principal plane of the semiconductor substrate; a first conductivity type source layer which is selectively formed on a surface of the base layer; a second conductivity type contact layer which is formed to be in contact with the source layer on the first principal plane side of the base layer and which has a concentration higher than that of the base layer; a gate electrode which is formed so as to face the drift layer, the base layer, and the source layer through an insulating film; an emitter electrode which is formed on the first principal plane so as to be electrically connected to the source layer; and an interlayer insulating film which is formed on the first principal plane of the semiconductor substrate to be interposed between the gate electrode and the emitter electrode so as to insulate the gate electrode and the emitter electrode, wherein the semiconductor device further includes a second conductivity type counter layer which is formed to be in contact with the source layer and to overlap the contact layer and which is formed to be shallower than the base layer and to have a high concentration, and wherein a total doping amount per unit area of the counter layer is larger than 10% of a total doping amount per unit area of the contact layer.
地址 Kawasaki-shi JP