发明名称 APPARATUS FOR FORMING A BLANK FOR FINISH FORGING FOR A FORGED CRANKSHAFT FOR A THREE-CYLINDER ENGINE AND METHOD FOR MANUFACTURING A FORGED CRANKSHAFT FOR A THREE-CYLINDER ENGINE USING THE SAME
摘要 In a forming apparatus, journal dies hold and retain rough journal portions of a preform blank therebetween, and reference crank pin die and movable crank pin dies contact rough crank pin portions thereof. In this state, the journal dies and the movable crank pin dies are moved axially toward the reference crank pin die and the reference crank pin die and the movable crank pin dies are moved perpendicular to an axial direction. With this, rough crank arm portions are axially compressed to reduce their thickness to that of crank arms of a forged crankshaft, and the rough crank pin portions are pressed perpendicular to the axial direction to increase an amount of eccentricity to that of the forged crankshaft crank pins. Consequently, it is possible to form a blank for finish forging having a shape generally in agreement with a shape of the forged crankshaft for a three-cylinder engine.
申请公布号 US2015314365(A1) 申请公布日期 2015.11.05
申请号 US201314650347 申请日期 2013.12.06
申请人 NIPPON STEEL & SUMITOMO METAL CORPORATION 发明人 OKUBO Junichi;TAMURA Kenji;YOSHIDA Kunihito;FUKUYASU Tomohiko;TANIMOTO Nobutaka;MATSUI Tadashi
分类号 B21K1/08;B21J9/00;B21J13/02;B21J5/02 主分类号 B21K1/08
代理机构 代理人
主权项 1. An apparatus for forming a blank for finish forging for a forged crankshaft for a three-cylinder engine, the apparatus configured to form, in a process of manufacturing the forged crankshaft, the blank for finish forging to be subjected to finish forging by which a final shape of the forged crankshaft is obtained, the apparatus configured to form the blank for finish forging from a preform blank, the preform blank including: rough journal portions having an axial length equal to an axial length of journals of the forged crankshaft; rough crank pin portions having an axial length equal to an axial length of crank pins of the forged crankshaft; and rough crank arm portions having an axial thickness greater than an axial thickness of crank arms of the forged crankshaft, the rough crank pin portions of the preform blank having a smaller amount of eccentricity in a direction perpendicular to an axial direction than an amount of eccentricity of the crank pins of the forged crankshaft, the apparatus, comprising: reference crank pin die disposed at a location of one rough crank pin portion among the rough crank pin portions, the reference crank pin die configured to be brought into contact with such one rough crank pin portion, the reference crank pin die configured to move in the direction perpendicular to the axial direction, but be constrained from moving axially, while being in contact with side surfaces of rough crank arm portions through which the rough crank arm portions connect with such one rough crank pin portion; movable crank pin dies disposed at locations of the corresponding rough crank pin portions excluding the rough crank pin portion being in contact with the reference crank pin die, the movable crank pin dies configured to be brought into contact with such rough crank pin portions, the movable crank pin dies configured to move axially toward the reference crank pin die and in the direction perpendicular to the axial direction, while being in contact with side surfaces of the rough crank arm portions through which the rough crank arm portions connect with such rough crank pin portions; and journal dies disposed at locations of the corresponding rough journal portions, the journal dies configured to hold and retain such rough journal portions therebetween in the direction perpendicular to the axial direction, the journal dies configured to move axially toward the reference crank pin die while being in contact with side surfaces of the rough crank arm portions through which the rough crank arm portions connect with such rough journal portions, wherein, in a state where the rough journal portions are held and retained by the journal dies, and the rough crank pin portions are contacted by the reference crank pin die and the movable crank pin dies, the journal dies are moved axially, the movable crank pin dies are moved axially and in the direction perpendicular to the axial direction, and the reference crank pin die is moved in the direction perpendicular to the axial direction, thereby compressing the rough crank arm portions in the axial direction so as to reduce the thickness thereof to the thickness of the crank arms of the forged crankshaft, and pressing the rough crank pin portions in the direction perpendicular to the axial direction so as to increase the amount of eccentricity thereof to the amount of eccentricity of the crank pins of the forged crankshaft.
地址 Tokyo JP