发明名称 Diversity receiving device and diversity receiving method
摘要 A diversity receiving device includes receiving circuits, a diversity combining unit, and an oscillation controller. The receiving circuit performs frequency conversion of an analog received signal obtained at a first receiving system, by using a plurality of lower-side oscillation-frequency signals supplied from a first local oscillator, to generate a plurality of lower-side low-frequency signals, adds up the plurality of lower-side low-frequency signals to generate a first addition signal. The receiving circuit performs frequency conversion of an analog received signal obtained at a second receiving system, by using a plurality of higher-side oscillation-frequency signals supplied from a second local oscillator, to generate a plurality of higher-side low-frequency signals, and adds up the plurality of higher-side low-frequency signals to generate a second addition signal. The oscillation controller controls lower-side oscillation-frequencies so that frequency bands of the plurality of lower-side low-frequency signals become adjacent to one another and controls higher-side oscillation-frequencies so that frequency bands of the plurality of higher-side low-frequency signals become adjacent to one another.
申请公布号 US9178599(B2) 申请公布日期 2015.11.03
申请号 US201314430314 申请日期 2013.07.17
申请人 Mitsubishi Electric Corporation 发明人 Imao Masataka
分类号 H04B7/10;H04L1/02;H04B7/08;H04B7/12;H04B15/00 主分类号 H04B7/10
代理机构 Birch, Stewart, Kolasch & Birch, LLP 代理人 Birch, Stewart, Kolasch & Birch, LLP
主权项 1. A diversity receiving device for receiving, at a first receiving system and a second receiving system, a transmission signal containing first to K-th high-frequency-channel components having mutually different first to K-th central frequencies respectively, K being an integer not less than 2, the diversity receiving device comprising: a first receiving circuit that receives, as an input, a first received signal obtained at the first receiving system; a second receiving circuit that receives, as an input, a second received signal obtained at the second receiving system; a diversity combining unit that combines an output of the first receiving circuit and an output of the second receiving circuit for each same frequency component; and an oscillation controller; the first receiving circuit including: a first local oscillator that supplies first to K-th lower-side oscillation-frequency signals having first to K-th lower-side oscillation-frequencies respectively, the first to K-th lower-side oscillation-frequencies being shifted toward lower frequency sides of the first to K-th central frequencies respectively; a first frequency converter that performs frequency conversion of the first received signal by using the first to K-th lower-side oscillation-frequency signals, thereby generating first to K-th lower-side low-frequency signals corresponding to the first to K-th lower-side oscillation-frequencies respectively; a first signal adder that adds up the first to K-th lower-side low-frequency signals, thereby generating a first addition signal; a first channel-component extractor that extracts, from the first addition signal, first to K-th lower-side low-frequency-channel components corresponding to the first to K-th high-frequency-channel components respectively; and a first channel signal processor that performs signal processing of the first to K-th lower-side low-frequency-channel components, thereby generating first to K-th lower-side low-frequency-channel processing signals corresponding to the first to K-th lower-side low-frequency-channel components respectively to output the first to K-th lower-side low-frequency-channel processing signals to the diversity combining unit; the second receiving circuit including: a second local oscillator that supplies first to K-th higher-side oscillation-frequency signals having first to K-th higher-side oscillation-frequencies respectively, the first to K-th higher-side oscillation-frequencies being shifted toward higher frequency sides of the first to K-th central frequencies respectively; a second frequency converter that performs frequency conversion of the second received signal by using the first to K-th higher-side oscillation-frequency signals, thereby generating first to K-th higher-side low-frequency signals corresponding to the first to K-th higher-side oscillation-frequencies respectively; a second signal adder that adds up the first to K-th higher-side low-frequency signals, thereby generating a second addition signal; a second channel-component extractor that extracts, from the second addition signal, first to K-th higher-side low-frequency-channel components corresponding to the first to K-th high-frequency-channel components respectively; and a second channel signal processor that performs signal processing of the first to K-th higher-side low-frequency-channel components, thereby generating first to K-th higher-side low-frequency-channel processing signals corresponding to the first to K-th higher-side low-frequency-channel components respectively, and outputs the first to K-th higher-side low-frequency-channel processing signals to the diversity combining unit; the oscillation controller controlling the first to K-th lower-side oscillation-frequencies so that frequency bands of the first to K-th lower-side low-frequency signals become adjacent to one another and controlling the first to K-th higher-side oscillation-frequencies so that frequency bands of the first to K-th higher-side low-frequency signals become adjacent to one another.
地址 Tokyo JP