发明名称 IMAGE FORMING APPARATUS AND CORRECTION DATA GENERATION METHOD
摘要 There is provided an image forming apparatus that reduces an operation speed of a unit configured to generate pieces of correction data with which the light intensity of laser light is corrected. Pieces of first correction data in a scanning direction of a photoconductor drum are associated with light sources and stored in memories. For a plurality of regions of the surface of the photoconductor drum, a CPU outputs, for each of the regions, pieces of correction data including pieces of second correction data for correction of electric potential characteristics of the region. The positions of pieces of first correction data match some of the positions of pieces of second correction data. A laser driver IC controls light intensity of laser light at the timing of the pieces of second correction data in accordance with a piece of first correction data and a piece of second correction data.
申请公布号 US2015268581(A1) 申请公布日期 2015.09.24
申请号 US201514660778 申请日期 2015.03.17
申请人 CANON KABUSHIKI KAISHA 发明人 Yamazaki Katsuyuki
分类号 B41J2/385 主分类号 B41J2/385
代理机构 代理人
主权项 1. An image forming apparatus, the image forming apparatus including a light source configured to emit a light beam, a photoconductor configured to be exposed to the light beam emitted from the light source, a deflection unit configured to deflect the light beam such that the light beam scans the photoconductor, and an optical member configured to guide the light beam deflected by the deflection unit to the photoconductor, the image forming apparatus developing, using toner, an electrostatic latent image formed on the photoconductor by exposure to the light beam, the image forming apparatus comprising: a storage unit configured to store a plurality of pieces of first correction data and a plurality of pieces of second correction data, the plurality of pieces of first correction data being pieces of data for correcting nonuniformity in density of a toner image, the nonuniformity being caused by electric potential characteristics of the photoconductor with respect to a light beam in a scanning direction in which the light beam scans the photoconductor, the plurality of pieces of first correction data being pieces of data corresponding to respective scan positions of the light beam in the scanning direction, the plurality of pieces of second correction data being pieces of data for correcting a change in light intensity of the light beam guided onto the photoconductor, the change being caused by optical characteristics of the optical member in the scanning direction, the plurality of pieces of second correction data also being pieces of data corresponding to the respective scan positions of the light beam in the scanning direction; and a control unit configured to control, in accordance with a piece of first correction data among the plurality of pieces of first correction data and a piece of second correction data among the plurality of pieces of second correction data output from the storage unit, light intensity of the light beam corresponding to a scan position of the light beam in the scanning direction, wherein in a period in which the light beam scans once across the photoconductor, timing of a piece of first correction data output by the storage unit from the plurality of pieces of first correction data matches, at least once, timing of a piece of second correction data output by the storage unit from the plurality of pieces of second correction data, and a period in which the storage unit outputs a piece of first correction data from the plurality of pieces of first correction data and a period in which the storage unit outputs a piece of second correction data from the plurality of pieces of second correction data have an integral multiple relationship.
地址 Tokyo JP