发明名称 Passive alignment multichannel parallel optical system
摘要 The invention provides an optical system, in particular, a multi-channel parallel optical transceiver system and methods of forming the same. The multi-channel parallel optical system includes a first substrate with at least one optical component mounted on its first side, a second substrate with optical fibers affixed in fiber fixing structures (grooves), the second substrate being mounted on the first side of the first substrate perpendicular to the first side of the first substrate so that the optical signal can be transmitted and received between the optical fibers and the mounted optical components with minimum loss. Passive alignment assembly is realized by using a series of alignment pins and holes and/or grooves pre-fabricated on the substrates. The optical systems may additionally include other structures to provide additional functionalities, in-line monitor photodetectors, and mechanical support or substrate elevation.
申请公布号 US9134490(B2) 申请公布日期 2015.09.15
申请号 US201213706674 申请日期 2012.12.06
申请人 LAXENSE INC. 发明人 Feng Ningning;Sun Xiaochen
分类号 G02B6/42;G02B6/36 主分类号 G02B6/42
代理机构 Chen Yoshimura LLP 代理人 Chen Yoshimura LLP
主权项 1. An optical system comprising: a first substrate having a first side; at least one optical component mounted on the first side of the first substrate, wherein each of the at least one optical component has a first side and a second side facing opposite to the first side with an optical surface on the first side, wherein the optical surface is capable of detecting and/or emitting optical signals, and wherein the second side of the optical component is mounted onto the first side of the first substrate; a second substrate having a first side with at least one fiber placement groove formed on the first side; and at least one optical fiber placed inside the at least one fiber placement groove and having an exposed end; wherein the first side of the second substrate and the at least one fiber placement groove are disposed perpendicular to the first side of the first substrate, and wherein the exposed end of the optical fiber is optically coupled with the optical surface of the at least one optical component, a fourth substrate having a first side and a second side facing generally opposite to the first side, the first side and second side of the fourth substrate being parallel to the first side of the first substrate and perpendicular to the first side of the second substrate, the fourth substrate defining at least one fiber placement hole extending from its second side to its first side, the at least one fiber placement hole being aligned with the at least one fiber placement groove on the first side of the second substrate, wherein the at least one optical fiber penetrates through the at least one fiber placement hole; and at least one third substrate including a first side and a second side facing opposite to the first side, the at least one third substrate being disposed between the first substrate and fourth substrate with the first and second sides of the third substrate being in contact with the first side of the first substrate and the second side of the fourth substrate, respectively, wherein a gap is defined between the first side of the first substrate and the second side of the fourth substrate and the at least one optical component is partially disposed within the gap, wherein the optical surface of the at least one optical component includes at least one laser diode, wherein the fourth substrate includes at least one photodetector on its second side configured to receive an optical signal emitted from the at least one laser diode to generate an electrical signal indicative of an intensity of the optical signal.
地址 Walnut CA US