发明名称 LED display apparatus having active devices and fabrication method thereof
摘要 An active matrix LED display apparatus and a fabrication method thereof are provided. The active matrix LED display apparatus enables to miniaturize pixel by a formation of wiring on bottom layer and an assembly of each block through each eutectic layer into each transistor block receptor and/or each LED block receptor formed according to each color element unit, and to be embodied with high luminance, low power consumption, high reliability and superior optical property by assembling a transistor block having high electron mobility. And the fabricating method of the present invention enables to make efficiently an AM-LED display apparatus at room temperature in a short time by using different shapes of receptor and block depending on the function of a transistor and/or on the color of an LED.
申请公布号 US9111843(B2) 申请公布日期 2015.08.18
申请号 US201113095295 申请日期 2011.04.27
申请人 SNU R&DB FOUNDATION 发明人 Park Byung-Gook;Seo Chang Su;Yoo Byung Doo;Hong Keun Kee;Jee Sang Yeop;Jeong Jae Min
分类号 H01L25/16;H01L23/00;H01L27/12;H01L33/20;H01L33/40 主分类号 H01L25/16
代理机构 代理人 Hespos Gerald E.;Porco Michael J.;Hespos Matthew T.
主权项 1. An LED display apparatus comprising: a buffer layer formed on a substrate; a switching transistor active layer and a driving transistor active layer formed separately from each other and having a source and a drain in both sides of the each active layer on the buffer layer in a color element unit; a first insulating layer formed to cover the switching and the driving transistor active layers on the substrate; a scan line formed across between the source and the drain of the switching transistor on the first insulating layer; a cathode line formed parallel to and separately from the scan line on the first insulating layer; a storage capacitor bottom electrode formed across between the source and the drain of the driving transistor and connected electrically to the drain of the switching transistor on the first insulating layer in a color element unit; a second insulating layer formed to cover the scan line, the cathode line and the storage capacitor bottom electrode on the first insulating layer; a data line formed vertically to the scan line and connected electrically to the source of the switching transistor on the second insulating layer; a power supply line formed parallel to and separately from the data line and connected electrically to the source of the driving transistor on the second insulating layer; a storage capacitor top electrode formed to overlap the storage capacitor bottom electrode and connected electrically to the power supply line on the second insulating layer in a color element unit; an anode contact layer formed between the data line and the power supply line and connected electrically to the drain of the driving transistor on the second insulating layer in a color element unit; an LED block receptor formed with a third insulating layer to cover at least one part of the data line, the power supply line, the storage capacitor top electrode and the anode contact layer on the second insulating layer in a color element unit; a cathode eutectic layer and an anode eutectic layer formed separately from each other and connected electrically to the cathode line and the anode contract layer, respectively, in the LED block receptor; and an LED block of the color element unit assembled into the LED block receptor through electrical connections of the cathode eutectic layer and the anode eutectic layer to a cathode electrode and an anode electrode of the LED block, respectively.
地址 JP