发明名称 METHOD OF OPERATING A COOLING APPARATUS TO PROVIDE STABLE TWO-PHASE FLOW
摘要 A method of operating a cooling apparatus is described that allows flexible cooling lines connecting an inlet manifold to an outlet manifold to be safely added or removed during operation of the cooling apparatus without causing unstable two-phase flow. The method can include providing a cooling apparatus having an inlet manifold, an outlet manifold, and a bypass extending from the inlet manifold to the outlet manifold. Each manifold can include a plurality of connection ports, such as quick-connect couplers, to accommodate adding and removing cooling lines between the inlet manifold and the outlet manifold. The method can include providing a flow rate of single-phase liquid coolant to the inlet manifold and setting a pressure regulator in the bypass to provide a certain flow rate through the bypass. The flow rate through the bypass can be determined as a function of an average flow rate through each of the cooling lines.
申请公布号 US2015189796(A1) 申请公布日期 2015.07.02
申请号 US201514644211 申请日期 2015.03.11
申请人 EBULLIENT, LLC 发明人 Shedd Timothy A.;Lindeman Brett A.
分类号 H05K7/20;F28F13/00;F28F9/02;F28D15/00;F28F7/02 主分类号 H05K7/20
代理机构 代理人
主权项 1. A method of providing stable operation of a cooling apparatus comprising two-phase bubbly flow, the method comprising: providing a cooling apparatus comprising: a primary cooling loop comprising: a pump configured to provide a flow of single-phase liquid coolant at a pump outlet; a reservoir fluidly connected to the primary cooling loop and located upstream of the pump and configured to store a supply of single-phase liquid coolant for the pump; and one or more heat sink modules fluidly connected to the primary cooling loop, wherein each heat sink module is configured to mount on and remove heat from a heat-providing surface;a first bypass having a first end and a second end, the first end of the first bypass being fluidly connected to the primary cooling loop downstream of the pump outlet, the second end of the first bypass being fluidly connected to the primary cooling loop at the reservoir, the first bypass comprising a first heat exchanger and a first pressure regulator, the first pressure regulator configured to regulate a first bypass flow of the flow of single-phase liquid coolant through the first heat exchanger, the first heat exchanger configured to subcool the first bypass flow of coolant below a saturation temperature of the coolant; anda second bypass having a first end and a second end, the first end of the second bypass being fluidly connected to the primary cooling loop downstream of the pump outlet and downstream of the first end of the first bypass and upstream of the one or more heat sink modules, the second end of the second bypass being fluidly connected to the primary cooling loop downstream of the one or more heat sink modules and upstream of the reservoir, the second bypass comprising a second pressure regulator configured to regulate a second bypass flow of the single-phase liquid coolant through the second bypass; setting the first pressure regulator in the first bypass to allow about 30-70% of the flow from the pump outlet to be pumped through the first bypass as the first bypass flow; setting the second pressure regulator in the second bypass to allow 15-50% of the flow from the pump outlet to be pumped through the second bypass as the second bypass flow, wherein a remaining portion of the flow of single-phase liquid coolant is pumped through the one or more heat sink modules and is transformed into two-phase bubbly flow within the one or more heat sink modules as heat is transferred to the remaining portion of the flow from the one or more heat providing surfaces.
地址 Madison WI US