发明名称 Q-switching-induced gain-switched erbium pulse laser system
摘要 The present invention relates to a Q-switching-induced gain-switched erbium pulse laser system, capable of generating erbium laser pulses within the 2.5 μm to 3.0 μm wavelength region, by means of Q-switching operation at 1.6 μm. At first, an Er3+-doped gain medium is pumped and Q-switched at the wavelength region from 1.58 μm to 1.62 μm, so that a Q-switched pulse is formed from the Er3+-doped gain medium. The Q-switched pulse results in an instant positive population inversion between the levels 4I11/2 and 4I13/2 of the Er3+-doped gain medium, followed by a gain-switched laser pulse at the wavelength region from 2.5 μm to 3.0 μm.
申请公布号 US8964799(B2) 申请公布日期 2015.02.24
申请号 US201213547291 申请日期 2012.07.12
申请人 National Cheng Kung University 发明人 Tsai Tzong-Yow
分类号 H01S3/082;H01S3/113;H01S3/067;H01S3/08;H01S3/0941;H01S3/16;H01S3/17 主分类号 H01S3/082
代理机构 Bacon & Thomas, PLLC 代理人 Bacon & Thomas, PLLC
主权项 1. A Q-switching-induced gain-switched erbium pulse laser system comprising: a first laser resonator comprising a first reflective component, a second reflective component, an Er3+-doped gain medium, and a Q-switch component, wherein the Er3+-doped gain medium and the Q-switch component are located between the first reflective component and the second reflective component; a second laser resonator comprising a third reflective component, a fourth reflective component, and the Er3+-doped gain medium, wherein the Er3+-doped gain medium is located between the second reflective component and the fourth reflective component; and a pumping light source component providing a pumping light being incident into the laser system; wherein the Er3+-doped gain medium is excited by the pumping light source, and creates a gain between levels 4I13/2 and 4I15/2 of the Er3+-doped gain medium; the first laser resonator is Q-switched by the Q-switch component to produce a first laser pulse from the Er3+-doped gain medium; the first laser pulse depletes the population on level 4I13/2 of the Er3+-doped gain medium, and results in a positive population inversion between the level 4I11/2 and 4I13/2 of the Er3+-doped gain medium, so that the second laser resonator is gain-switched to produce a second laser pulse from the Er3+-doped gain medium; and the second laser pulse outputs from one end of the fourth reflective component of the second laser resonator; wherein the reflectivity of each of the first reflective component and the third reflective component is between 95% and 100%, respectively, the second reflective component is between 80% and 100%, and the fourth reflective component is between 4% and 70%.
地址 Tainan TW