发明名称 OPTICAL NON-DESTRUCTIVE INSPECTION APPARATUS AND OPTICAL NON-DESTRUCTIVE INSPECTION METHOD
摘要 There are provided an optical non-destructive inspection apparatus and an optical non-destructive inspection method. The apparatus includes a focusing-collimating unit, a heating laser beam source, a heating laser beam guide unit, an infrared detector, an emitted-infrared guide unit, first and second correcting laser beam source, first and second correcting laser beam guide units, first and second correcting laser detectors, first and second reflected laser beam guide units, and a control unit. The control unit controls the heating laser beam source and the first and second correcting laser beam sources, measures a temperature rise characteristic that is a temperature rise state of a measurement spot based on a heating time, on the basis of a detection signal from the infrared detector and detection signals from the first and second correcting laser detectors, and determines a state of a measurement object based on the measured temperature rise characteristic.
申请公布号 US2014321497(A1) 申请公布日期 2014.10.30
申请号 US201414256539 申请日期 2014.04.18
申请人 JTEKT CORPORATION 发明人 MATSUMOTO Naoki;YOSHIDA Kouya;MATSUMOTO Jun
分类号 G01N25/72;G01K15/00 主分类号 G01N25/72
代理机构 代理人
主权项 1. An optical non-destructive inspection apparatus comprising: a focusing-collimating unit that emits parallel light, which is incident from a first side along an optical axis, from a second side, focuses the parallel light to a measurement spot set on a measurement object as a focal position, converts light, which is emitted and reflected from the measurement spot and incident from the second side, into parallel light along the optical axis, and emits the parallel light from the first side; a heating laser beam source that emits a heating laser beam for heating the measurement object without destroying the measurement object; a heating laser beam guide unit that guides the heating laser beam to the first side of the focusing-collimating unit; an infrared detector that detects an infrared light beam emitted from the measurement spot; an emitted-infrared guide unit that guides an infrared light beam with a predetermined infrared wavelength out of the parallel light emitted from the measurement spot and emitted from the first side of the focusing-collimating unit, to the infrared detector; a first correcting laser beam source that emits a first correcting laser beam having output power smaller than that of the heating laser beam, and having a first correcting laser wavelength different from a heating laser wavelength of the heating laser beam; a first correcting laser beam guide unit that guides the first correcting laser beam emitted from the first correcting laser beam source to the first side of the focusing-collimating unit; a first correcting laser detector that detects the first correcting laser beam reflected by the measurement spot; a first reflected laser beam guide unit that guides the first correcting laser beam reflected by the measurement spot and emitted from the first side of the focusing-collimating unit, to the first correcting laser detector; a second correcting laser beam source that emits a second correcting laser beam having output power smaller than that of the heating laser beam, and having a second correcting laser wavelength different from the heating laser wavelength of the heating laser beam; a second correcting laser beam guide unit that guides the second correcting laser beam emitted from the second correcting laser beam source to the first side of the focusing-collimating unit; a second correcting laser detector that detects the second correcting laser beam reflected by the measurement spot; a second reflected laser beam guide unit that guides the second correcting laser beam reflected by the measurement spot and emitted from the first side of the focusing-collimating unit, to the second correcting laser detector; and a control unit, wherein the control unit controls the heating laser beam source, the first correcting laser beam source, and the second correcting laser beam source, measures a temperature rise characteristic based on a detection signal from the infrared detector, a detection signal from the first correcting laser detector, and a detection signal from the second correcting laser detector, and determines a state of the measurement object based on the measured temperature rise characteristic, the temperature rise characteristic being a temperature rise state of the measurement spot based on a heating time.
地址 Osaka JP