发明名称 METHOD FOR FORMING NON-RECTANGULAR SECTION RING FROM RECTANGULAR SECTION RING
摘要 A method for expanding a rectangular section ring to form a non-rectangular section ring. The method includes heating a rectangular section ring of an alloy to a temperature of between 1000 and 1020° C., preheating an expanding block to a temperature of between 260 and 320° C., nesting the inner circumferential surface of the rectangular section ring on the outer circumferential surface of the expanding block; enabling the expanding block to press the inner circumferential surface of the ring in the radial direction, expanding the inner and outer diameter of the rectangular section ring and decreasing the wall thickness thereof for deforming the rectangular section ring to yield a profiled ring billet, whereby finishing a first expanding; rotating the profiled ring billet for 45° along the central axis, whereby finishing a first rotation; and repeating the expanding process and the rotation to obtain a non-rectangular section ring.
申请公布号 US2014260501(A1) 申请公布日期 2014.09.18
申请号 US201414285663 申请日期 2014.05.23
申请人 GUIZHOU ANDA AVIATION FORGING CO., LTD 发明人 WEI Zhijian;XIE Yongfu;WANG Longxiang;ZHANG Haiyan
分类号 B21D31/04 主分类号 B21D31/04
代理机构 代理人
主权项 1. A method for expanding a rectangular section ring to form a non-rectangular section ring, the method comprising: 1) providing an expanding machine comprising a mandrel slider, a radial slider, and an expanding block, the expanding block comprising an outer circumferential surface matching an inner circumferential surface of a finally-obtained non-rectangular section ring; 2) heating a rectangular section ring of an alloy comprising an inner circumferential surface to a temperature of between 1000 and 1020° C., preheating the expanding block to a temperature of between 260 and 320° C., nesting the inner circumferential surface of the rectangular section ring on a periphery of the outer circumferential surface of the expanding block of the expanding machine, and allowing the radial slider in an aggregated state; 3) starting the expanding machine, exerting an axial tension F on the mandrel slider to enable the mandrel slider to move downward along an axial direction and to press an inner conic surface of the radial slider thereby synchronously dispersing each part of the radial slider in a radial direction; allowing the expanding block disposed on an outer circumferential surface of the radial slider to press the inner circumferential surface of the rectangular section ring in the radial direction; and expanding an inner diameter and an outer diameter of the rectangular section ring and decreasing a wall thickness thereof for deforming the rectangular section ring to yield a profiled ring billet, whereby finishing a first expanding, during which, an expanding temperature of the rectangular section ring is controlled between 1000 and 1020° C., an expanding time is controlled between 30 and 40 seconds, a retention time is controlled between 20 and 25 seconds, and an expanding deformation is controlled between 10% and 12%; 4) driving the mandrel slider by the expanding machine to move upward in the radial slider along the axial direction; driving the radial slider to synchronously aggregate along the radial direction for separating the expanding block from the profiled ring billet; and starting a guide roller on the expanding machine to rotate the profiled ring billet for 45° along a central axis, whereby finishing a first rotation of the profiled ring billet; 5) repeating step 3) for performing a second expanding on the profiled ring billet, during which, the expanding temperature of the profiled ring billet is controlled between 960 and 980° C., the expanding time is controlled between 20 and 30 seconds, the retention time is controlled between 10 and 15 seconds, and the expanding deformation is controlled between 1.8% and 2%; 6) repeating step 4) for performing a second rotation of the profiled ring billet for another 45° in the same direction of the first rotation; 7) repeating step 3) for performing a third expanding on the profiled ring billet, during which, the expanding temperature of the profiled ring billet is controlled between 930 and 950° C., the expanding time is controlled between 20 and 30 seconds, the retention time is controlled between 10 and 15 seconds, and the expanding deformation is controlled between 1.3% and 1.5%; 8) repeating step 4) for performing a third rotation of the profiled ring billet for another 45° in the same direction of the first rotation; 9) repeating step 3) for performing a fourth expanding on the profiled ring billet, during which, the expanding temperature of the profiled ring billet is controlled between 900 and 920° C., the expanding time is controlled between 30 and 40 seconds, the retention time is controlled between 25 and 28 seconds, and the expanding deformation of the profiled ring billet is controlled between 1.2% and 1.4%; and 10) allowing the mandrel slider to move upward after the fourth expanding, aggregating the radial slider, and collecting the non-rectangular section ring.
地址 ANSHUN CN