发明名称 Method and system for water extraction from high humidity sea shores
摘要 In one example, we describe reliable, flexible, low-maintenance, low-overhead, low-cost installation, practical, and easy-to-install structures and components or techniques (methods and systems) for water capture from high humidity sources, e.g., sea or river, for use or consumption by humans, animals, or plants/agriculture/food production. In one example, it is modularized. Thus, it is easier for transportation and maintenance, with less cost and down-time. For example, it can be used in some regions in the Middle East or Africa, with dry land with no or small amount of rain. In one example, we describe the use of renewable energy sources. In one example, we describe the control system for operation of water collection and distribution systems, e.g., for optimization and efficiency or cost. We also describe the mechanisms, techniques, components, and systems to implement various tasks and goals related to these.
申请公布号 US8833092(B1) 申请公布日期 2014.09.16
申请号 US201414251580 申请日期 2014.04.12
申请人 发明人 Sobhani Cyrus;Tadayon Saied;Tadayon Bijan
分类号 F25D21/00;B01D53/26 主分类号 F25D21/00
代理机构 Maxvalueip LLC 代理人 Maxvalueip LLC
主权项 1. A method of extracting water from the humidity collected from sea or river, said method comprising: a collector tip sucking up humidity from surface of said sea or river, using a fan; a processor device receiving weather data from weather authority and local data from a local unit; said processor device analyzing said weather data and said local data; a rules engine receiving rules from a rules database; said processor device communicating with said rules engine; said processor device applying said rules to said weather data and said local data; said processor device sending rules and data analysis to a controller; wherein said collector tip is connected to a first end of a flexible accordion-shaped tube; wherein said flexible accordion-shaped tube has a circular cross-section; wherein said flexible accordion-shaped tube is made of plastic or elastic material; wherein a second end of said flexible accordion-shaped tube is connected to a tower; wherein said tower is located at a shore near edge of said sea or river; wherein a crane is connected to said tower; wherein said crane holds said flexible accordion-shaped tube, using multiple sets of connected bar pieces; wherein each of said multiple sets of connected bar pieces comprises two or more bar pieces; wherein each of said bar pieces is connected to another of said bar pieces, by a hinge or connector or elbow; wherein said fan is installed inside said flexible accordion-shaped tube; a first motor rotating said fan; wherein a second set of motors are connected to said multiple sets of connected bar pieces, using a set of main bars; wherein said second set of motors are located on said tower; wherein each of said set of main bars comprises holes, which are located periodically throughout each of said set of main bars' length; wherein there are N0 motors in said second set of motors, and there are N0 sets of connected bar pieces in said multiple sets of connected bar pieces, and there are N0 main bars in said set of main bars; wherein N0 is an integer number, equal or larger than 3; each of said N0 motors rotating a gear; said gear engaging said holes which are located periodically throughout each of said set of main bars' length, using said gear's pins; each of said N0 motors pushing or pulling each of said set of main bars; each of said set of main bars pushing or pulling each of said multiple sets of connected bar pieces; a first of said multiple sets of connected bar pieces moving said collector tip horizontally; said first of said multiple sets of connected bar pieces rotating said collector tip; said first of said multiple sets of connected bar pieces orienting said collector tip; said local unit receiving wind direction and wind speed information from a wind vane and an anemometer, respectively; wherein said wind vane and said anemometer are located on said crane; said processor device receiving said wind direction and wind speed information from said local unit; said processor device analyzing said wind direction and wind speed information; said processor device sending wind analysis to said controller; said controller communicating with said tower, said crane, said second set of motors, and said first motor; said controller adjusting direction and orientation of said collector tip to be same as said wind direction, using said multiple sets of connected bar pieces; said first of said multiple sets of connected bar pieces lifting said collector tip from one side in a vertical position; said controller adjusting operation of said tower, said crane, said second set of motors, and said first motor, based on said rules engine, according to said rules database; if relative humidity measured by said local unit is below Hr0, then said controller turning off said fan, said crane, said second set of motors, and said first motor; if air temperature measured by said local unit is below T0, then said controller turning off said fan, said crane, said second set of motors, and said first motor; if air temperature measured by said local unit is below T1, and relative humidity measured by said local unit is below Hr1, then said controller turning off said fan; if said wind speed is more than V0, then said controller turning off said fan, said crane, said second set of motors, and said first motor; said processor device receiving energy usage and consumption data from said local unit; if more than N percent of energy for operation comes from non-green or renewable kinds, then said controller turning off said fan; if more than N1 percent of the energy for operation comes from battery, then said controller turning off said fan; if less than G gallons per minute of water is extracted by said local unit, then said controller turning off said fan; if less than G1 gallons of water is extracted by said local unit, per Z energy used, then said controller turning off said fan; and if less than G2 gallons of water is extracted by said local unit, per Z1 non-renewable energy used, then said controller turning off said fan.
地址 Potomac MD US