发明名称 Apparatus and method of improving beam shaping and beam homogenization
摘要 The present invention generally relates to an optical system that is able to reliably deliver a uniform amount of energy across an anneal region contained on a surface of a substrate. The optical system is adapted to deliver, or project, a uniform amount of energy having a desired two-dimensional shape on a desired region on the surface of the substrate. Typically, the anneal regions may be square or rectangular in shape. Generally, the optical system and methods of the present invention are used to preferentially anneal one or more regions found within the anneal regions by delivering enough energy to cause the one or more regions to re-melt and solidify.
申请公布号 US8829392(B2) 申请公布日期 2014.09.09
申请号 US201213401553 申请日期 2012.02.21
申请人 Applied Materials, Inc. 发明人 Adams Bruce E.;Howells Samuel C.;Jennings Dean;Li Jiping;Thomas Timothy N.;Moffatt Stephen
分类号 B23K26/06;B23K26/08 主分类号 B23K26/06
代理机构 Patterson & Sheridan, LLP 代理人 Patterson & Sheridan, LLP
主权项 1. An apparatus for thermally processing a substrate, comprising: an energy source assembly that has an output that is adapted to deliver a first energy pulse; a pulse stretching device that comprises: a first beam splitting device that is adapted to split the first energy pulse delivered from the energy source assembly into a first sub-pulse and a second sub-pulse, wherein the first sub-pulse is transferred along a first path having a first length to a beam combining device; anda first plurality of mirrors that are aligned to reflect the second sub-pulse received from the first beam splitting device along a second path having a second length to the beam combining device; a first micro-lens array having a plurality of micro-lenses that are adapted to receive at least a portion of the first energy pulse; a second micro-lens array having a plurality of micro-lenses that are adapted to receive at least a portion of the energy transmitted from the first micro-lens array; a first lens that is positioned to receive the at least a portion of the energy transmitted from the micro lenses in the second micro-lens array and transmit the energy received from the second micro-lens array to one or more components that are used to direct the energy received to a surface of the substrate; a second lens that is positioned to receive at least a portion of the first energy pulse and cause one or more images received by the micro-lenses in the first micro-lens array to vary for two or more micro-lenses between a center and an edge of the first micro-lens array; and a random diffuser that is positioned to receive at least a portion of the first energy pulse and transmit the at least a portion of the first energy pulse to the first micro-lens array.
地址 Santa Clara CA US