发明名称 Optical characteristic measurement device and optical characteristic measurement method
摘要 A linearly polarized light reaches a sample S through a polarizer and receives a retardation from the sample S. Then, the light reaches a movable mirror unit and a fixed mirror unit of a phase shifter through a first polarizing plate and a second polarizing plate. Then, the reflected measurement lights pass through an analyzer, and are caused by an imaging lens to form an interference image on the light-receiving surface of a detector. At this time, an optical path length difference between a beam reflected on the movable mirror unit and a beam reflected on the fixed mirror unit is continuously changed the movable mirror unit. Hence, the imaging intensity of the interference image detected by the detector continuously changes producing a synthetic waveform similar to an interferogram. The synthetic waveform is Fourier-transformed, to obtain an amplitude per wavelength and a birefringent phase difference per wavelength.
申请公布号 US8830462(B2) 申请公布日期 2014.09.09
申请号 US201214001810 申请日期 2012.02.28
申请人 National University Corporation Kagawa University 发明人 Ishimaru Ichiro
分类号 G01J4/00;G01J3/02;G01J3/453;G01N21/23 主分类号 G01J4/00
代理机构 Oliff PLC 代理人 Oliff PLC
主权项 1. An optical characteristic measurement device comprising: a) a division optical system for directing a light emitted from an object to be measured, on which a linearly polarized light is incident, to a first polarizing plate and a second polarizing plate; b) an analyzer for allowing a synthetic light in a predetermined polarization direction to be transmitted therethrough, the synthetic light being made of a first polarization component transmitted through the first polarizing plate and a second polarization component transmitted through the second polarizing plate; c) an imaging optical system for directing the synthetic light transmitted through the analyzer to a single point so as to thereby form an interference image; d) a detection unit for detecting a light intensity of the interference image; e) a phase difference changer for changing a difference in optical path length between the first polarization component and the second polarization component that respectively travel from the first polarizing plate and the second polarizing plate to the analyzer, to thereby change a phase difference between the first polarization component and the second polarization component; and f) a processing unit for Fourier-transforming data of a change in light intensity detected by the detection unit along with the change in phase difference, to thereby acquire an amplitude per wavelength and a birefringent phase difference per wavelength of the light emitted from the object to be measured.
地址 Takamatsu JP