发明名称 Various methods and apparatuses for a radiant-heat driven chemical reactor
摘要 Heat-transfer-aid particles entrained with 1) biomass particles, 2) reactant gas, or 3) both are fed into the radiant heat chemical reactor. The inner wall of a cavity and the tubes of the chemical reactor act as radiation distributors by either absorbing radiation and re-radiating it to the heat-transfer-aid particles or reflecting the incident radiation to the heat-transfer-aid particles. The radiation is absorbed by the heat-transfer-aid particles, and the heat is then transferred by conduction to the reacting gas at temperatures between 900° C. and 1600° C. The heat-transfer-aid particles mix with the reactant gas in the radiant heat chemical reactor to sustain the reaction temperature and heat transfer rate to stay within a pyrolysis regime. The heat-transfer-aid particles produce a sufficient heat surface-area to mass ratio of these particles when dispersed with the reactant gas to stay within the pyrolysis regime during the chemical reaction.
申请公布号 US8814961(B2) 申请公布日期 2014.08.26
申请号 US201213429749 申请日期 2012.03.26
申请人 Sundrop Fuels, Inc. 发明人 Perkins Christopher;Jovanovic Zoran;Laska Timothy E.
分类号 B01J7/00 主分类号 B01J7/00
代理机构 Rutan & Tucker, LLP 代理人 Rutan & Tucker, LLP
主权项 1. An apparatus, comprising: a thermal receiver comprising a cavity; a radiant heat chemical reactor comprising multiple reactor tubes located inside the cavity of the thermal receiver, wherein the chemical reactor is configured to contain a chemical reaction driven by radiant heat, wherein the chemical reaction is an endothermic reaction including one or more of biomass gasification and hydrocarbon reforming or cracking; a source of heat-transfer-aid particles to be entrained with 1) biomass particles, 2) reactant gas, or 3) both; one or more feed lines connected to the source of heat-transfer-aid particles configured to add the entrained heat-transfer-aid particles into the radiant heat chemical reactor, wherein an indirect radiation driven geometry of the radiant heat chemical reactor is configured to use radiation as a primary mode of heat transfer to the entrained heat-transfer-aid particles, wherein each reactor tube is configured to separate an exothermic heat source from the endothermic reaction occurring within the radiant heat chemical reactor; wherein an inner wall of the cavity of the thermal receiver and the multiple reactor tubes are configured to act as radiation distributors by either absorbing radiation from the heat source and re-radiating it to the heat-transfer-aid particles, or reflecting the incident radiation to the heat-transfer-aid particles, where the radiation is absorbed by the heat-transfer-aid particles, and heat is then transferred by conduction and/or convection to the reactant gas at a temperature between 900° C. and 1600° C., where the heat-transfer-aid particles mixed with the reactant gas in the radiant heat chemical reactor sustain a reaction temperature and a heat transfer rate to stay within a pyrolysis regime; a separator coupled downstream of the radiant heat chemical reactor to separate out the heat-transfer-aid particles from gas products from the chemical reaction, where the heat-transfer-aid particles are chemically inert to the chemical reaction occurring within the chemical reactor, are formed of a solid state of matter, and have an average effective diameter size of between 1,000,000 nanometers and 1000 nanometers to produce a sufficient heat surface-area to mass ratio of the heat-transfer-aid particles when dispersed with the reactant gas so as to stay within the pyrolysis regime during the chemical reaction; a heat aid particle storage mechanism configured to accumulate the heat-transfer-aid particles and any ash remnants that exit the chemical reactor, wherein the separator is configured to separate the heat-transfer-aid particles and any ash remnants from the gas products of the chemical reaction into the heat aid particle storage mechanism, which is configured to extract heat from the accumulated heat-transfer-aid particles and the ash remnants so as to heat a working fluid that drives an electricity generation apparatus, a steam generation unit, or other apparatus used in doing heat based processes; and a control system programmed to control at least a heat-transfer-aid particle feed rate, a reactive gas feed rate, and an exit temperature of the radiant heat chemical reactor based on sensor measurements of these parameters conveyed back to the control system.
地址 Longmont CO US