发明名称 Smart flow sharing system
摘要 A smart flow sharing system, useful in hydraulic systems having more than one hydraulically demanding equipment function wherein more than one of the hydraulically demanding functions are sometimes activated at the same time, has modified hydraulic passages and at least two fixed displacement pumps. The system automatically prioritizes hydraulic fluid flow so that when only one of two hydraulically demanding functions is activated by an operator, it receives the hydraulic fluid flow from both fixed displacement pumps, but when both hydraulically demanding functions are activated, one of the functions receives hydraulic fluid flow from the first fixed displacement pump, and the other function separately receives hydraulic fluid flow from the second fixed displacement pump. The smart flow sharing system accomplishes the foregoing without resorting to complex hydraulics or expensive additional components. An equipment operator advantageously achieves superior controllability and quicker movement of equipment functions using the invention.
申请公布号 US8806862(B2) 申请公布日期 2014.08.19
申请号 US200812317029 申请日期 2008.12.18
申请人 Parker-Hannifin Corporation 发明人 Harsia Jarmo Antero
分类号 F16D31/02 主分类号 F16D31/02
代理机构 Renner, Otto, Boisselle & Sklar, LLP 代理人 Renner, Otto, Boisselle & Sklar, LLP
主权项 1. A smart flow sharing system for operation of hydraulic equipment, comprising: (1) a first fixed displacement pump; (2) a second fixed displacement pump; (3) an open center core for conducting hydraulic fluid, wherein the open center core has a first end and a second end; (4) a first power core for conducting hydraulic fluid; (5) a first open center/power core passage for conducting hydraulic fluid, having a first end and a second end, wherein the first end of the first open center/power core passage is hydraulically connected to the open center core, and the second end of the first open center/power core passage is hydraulically connected to the first power core; (6) a second power core for conducting hydraulic fluid; (7) a second open center/power core passage for conducting hydraulic fluid, having a first end and a second end, wherein the first end of the second open center/power core passage is hydraulically connected to the open center core, and the second end of the second open center/power core passage is hydraulically connected to the second power core; (8) a third power core for conducting hydraulic fluid; (9) a third open center/power core passage for conducting hydraulic fluid, having a first end and a second end, wherein the first end of the third open center/power core passage is hydraulically connected to the open center core, and the second end of the third open center/power core passage is hydraulically connected to the third power core; (10) a hydraulic fluid tank; (11) a tank galley for conducting hydraulic fluid to the hydraulic fluid tank; (12) wherein the first end of the open center core is hydraulically connected to and receives hydraulic fluid pumped by the first fixed displacement pump, and the second end of the open center core is hydraulically connected to the tank galley; (13) a first set of spools comprising at least a first spool; (14) a second set of spools comprising at least a second spool; (15) a third set of spools comprising at least a third spool; (16) wherein each spool in the first set of spools is located between the first open center/power core passage and the second open center/power core passage; (17) wherein each spool in the second set of spools is located between the second open center/power core passage and the third open center/power core passage; (18) wherein each spool in the third set of spools is located between the third power core passage and the second end of the open center core; (19) wherein the second end of the first open center/power core passage is hydraulically connected to the open center core downstream on the open center core from the first fixed displacement pump, and upstream on the open center core of any of the spools in the first set of spools; (20) wherein the second end of the second open center/power core passage is hydraulically connected to the open center core downstream on the open center core from any of the spools in the first set of spools, and upstream on the open center core of any of the spools in the second set of spools; (21) wherein the second end of the third open center/power core passage is hydraulically connected to the open center core downstream on the open center core from any of the spools in the second set of spools, and upstream on the open center core of any of the spools in the third set of spools; (22) a second pump passage for conducting hydraulic fluid, with the second pump passage having a first end and a second end, wherein the first end of the second pump passage is hydraulically connected to and receives hydraulic fluid pumped by the second displacement pump, and the second end of the second pump passage is hydraulically connected to either: (A) the open center core downstream on the open center core from the first set of spools and upstream on the open center core from the second set of spools; or (B) the second open center/power core passage; (23) wherein each spool of the first set of spools, has associated therewith: (A) a first hydraulic port and a second hydraulic port; (B) a first spool passage between the first power core and the first hydraulic port associated with the spool, that is capable of being opened or closed depending upon the position of the spool; (C) a second spool passage between the first power core and the second hydraulic port associated with the spool, that is capable of being opened or closed depending upon the position of the spool; (D) a third spool passage between the tank galley and the first hydraulic port associated with the spool, that is capable of being opened or closed depending upon the position of the spool; (E) a fourth spool passage between the tank galley and the second hydraulic port associated with the spool, that is capable of being opened or closed depending upon the position of the spool; (F) a fifth spool passage, wherein the open center core passes through the fifth spool passage, and wherein, depending upon the position of the spool, the spool may permit hydraulic fluid to flow through the fifth spool passage and the open center core in an unrestricted manner, or the spool may partially restrict the hydraulic fluid flowing through the fifth spool passage and the open center core; (24) wherein each spool of the second set of spools has associated therewith: (A) a first hydraulic port and a second hydraulic port; (B) a first spool passage between the second power core and the first hydraulic port associated with the spool, that is capable of being opened or closed depending upon the position of the spool; (C) a second spool passage between the second power core and the second hydraulic port associated with the spool, that is capable of being opened or closed depending upon the position of the spool; (D) a third spool passage between the tank galley and the first hydraulic port associated with the spool, that is capable of being opened or closed depending upon the position of the spool; (E) a fourth spool passage between the tank galley and the second hydraulic port associated with the spool, that is capable of being opened or closed depending upon the position of the spool; (F) a fifth spool passage, wherein the open center core passes through the fifth spool passage, and wherein, depending upon the position of the spool, the spool may permit hydraulic fluid to flow through the fifth spool passage and the open center core in an unrestricted manner, or the spool may partially restrict the hydraulic fluid flowing through the fifth spool passage and the open center core; (25) wherein each spool of the third set of spools has associated therewith: (A) a first hydraulic port and a second hydraulic port; (B) a first spool passage between the third power core and the first hydraulic port associated with the spool, that is capable of being opened or closed depending upon the position of the spool; (C) a second spool passage between the third power core and the second hydraulic port associated with the spool, that is capable of being opened or closed depending upon the position of the spool; (D) a third spool passage between the tank galley and the first hydraulic port associated with the spool, that is capable of being opened or closed depending upon the position of the spool; (E) a fourth spool passage between the tank galley and the second hydraulic port associated with the spool, that is capable of being opened or closed depending upon the position of the spool; (F) a fifth spool passage, wherein the open center core passes through the fifth spool passage, and wherein, depending upon the position of the spool, the spool may permit hydraulic fluid to flow through the fifth spool passage and the open center core in an unrestricted manner, or the spool may partially restrict the hydraulic fluid flowing through the fifth spool passage and the open center core; (26) wherein each spool in the first set of spools has at least a neutral position, a first non-neutral position, and a second non-neutral position, wherein each such spool in the first set of spools operates in the following manner: (A) in the neutral position, the spool permits hydraulic fluid to flow through the fifth spool passage and the open center core passing therethrough in an unrestricted manner, and the spool blocks the flow of hydraulic fluid through the first spool passage, the second spool passage, the third spool passage, and the fourth spool passage; (B) in the first non-neutral position, the spool partially restricts the flow of hydraulic fluid through the fifth spool passage and the open center core passing therethrough, the partial restriction causes hydraulic fluid in the open center core upstream of the partial restriction to increase in pressure, the hydraulic fluid under pressure is conducted through the first open center/power core passage into the first power core, the spool opens the first spool passage between the first power core and the first hydraulic port associated with the spool allowing hydraulic fluid under pressure to flow from the first power core to the first hydraulic port associated with the spool, the spool opens the fourth spool passage between the tank galley and the second hydraulic port associated with the spool allowing hydraulic fluid to flow from the second hydraulic port associated with the spool to the tank galley, the spool closes the second spool passage between the first power core and the second hydraulic port associated with the spool, and the spool closes the third spool passage between the tank galley and the first hydraulic port associated with the spool; and (C) in the second non-neutral position, the spool partially restricts the flow of hydraulic fluid through the fifth spool passage and the open center core passing therethrough, the partial restriction causes hydraulic fluid in the open center core upstream of the partial restriction to increase in pressure, the hydraulic fluid under pressure is conducted through the first open center/power core passage into the first power core, the spool opens the second spool passage between the first power core and the second hydraulic port associated with the spool allowing hydraulic fluid under pressure to flow from the first power core to the second hydraulic port associated with the spool, the spool opens the third spool passage between the tank galley and the first hydraulic port associated with the spool allowing hydraulic fluid to flow from the first hydraulic port associated with the spool to the tank galley, the spool closes the first spool passage between the first power core and the first hydraulic port associated with the spool, and the spool closes the fourth spool passage between the tank galley and the second hydraulic port associated with the spool; (27) wherein each spool in the second set of spools has at least a neutral position, a first non-neutral position, and a second non-neutral position, wherein each such spool in the second set of spools operates in the following manner: (A) in the neutral position, the spool permits hydraulic fluid to flow through the fifth spool passage and the open center core passing therethrough in an unrestricted manner, and the spool blocks the flow of hydraulic fluid through the first spool passage, the second spool passage, the third spool passage, and the fourth spool passage; (B) in the first non-neutral position, the spool partially restricts the flow of hydraulic fluid through the fifth spool passage and the open center core passing therethrough, the partial restriction causes hydraulic fluid in the open center core upstream of the partial restriction to increase in pressure, the hydraulic fluid under pressure is conducted through the second open center/power core passage into the second power core, the spool opens the first spool passage between the second power core and the first hydraulic port associated with the spool allowing hydraulic fluid under pressure to flow from the second power core to the first hydraulic port associated with the spool, the spool opens the fourth spool passage between the tank galley and the second hydraulic port associated with the spool allowing hydraulic fluid to flow from the second hydraulic port associated with the spool to the tank galley, the spool closes the second spool passage between the second power core and the second hydraulic port associated with the spool, and the spool closes the third spool passage between the tank galley and the first hydraulic port associated with the spool; and (C) in the second non-neutral position, the spool partially restricts the flow of hydraulic fluid through the fifth spool passage and the open center core passing therethrough, the partial restriction causes hydraulic fluid in the open center core upstream of the partial restriction to increase in pressure, the hydraulic fluid under pressure is conducted through the second open center/power core passage into the second power core, the spool opens the second spool passage between the second power core and the second hydraulic port associated with the spool allowing hydraulic fluid under pressure to flow from the second power core to the second hydraulic port associated with the spool, the spool opens the third spool passage between the tank galley and the first hydraulic port associated with the spool allowing hydraulic fluid to flow from the first hydraulic port associated with the spool to the tank galley, the spool closes the first spool passage between the second power core and the first hydraulic port associated with the spool, and the spool closes the fourth spool passage between the tank galley and the second hydraulic port associated with the spool; (28) wherein each spool in the third set of spools has at least a neutral position, a first non-neutral position, and a second non-neutral position, wherein each such spool in the third set of spools operates in the following manner: (A) in the neutral position, the spool permits hydraulic fluid to flow through the fifth spool passage and the open center core passing therethrough in an unrestricted manner, and the spool blocks the flow of hydraulic fluid through the first spool passage, the second spool passage, the third spool passage, and the fourth spool passage; (B) in the first non-neutral position, the spool partially restricts the flow of hydraulic fluid through the fifth spool passage and the open center core passing therethrough, the partial restriction causes hydraulic fluid in the open center core upstream of the partial restriction to increase in pressure, the hydraulic fluid under pressure is conducted through the third open center/power core passage into the third power core, the spool opens the first spool passage between the third power core and the first hydraulic port associated with the spool allowing hydraulic fluid under pressure to flow from the third power core to the first hydraulic port associated with the spool, the spool opens the fourth spool passage between the tank galley and the second hydraulic port associated with the spool allowing hydraulic fluid to flow from the second hydraulic port associated with the spool to the tank galley, the spool closes the second spool passage between the third power core and the second hydraulic port associated with the spool, and the spool closes the third spool passage between the tank galley and the first hydraulic port associated with the spool; and (C) in the second non-neutral position, the spool partially restricts the flow of hydraulic fluid through the fifth spool passage and the open center core passing therethrough, the partial restriction causes hydraulic fluid in the open center core upstream of the partial restriction to increase in pressure, the hydraulic fluid under pressure is conducted through the third open center/power core passage into the third power core, the spool opens the second spool passage between the third power core and the second hydraulic port associated with the spool allowing hydraulic fluid under pressure to flow from the third power core to the second hydraulic port associated with the spool, the spool opens the third spool passage between the tank galley and the first hydraulic port associated with the spool allowing hydraulic fluid to flow from the first hydraulic port associated with the spool to the tank galley, the spool closes the first spool passage between the third power core and the first hydraulic port associated with the spool, and the spool closes the fourth spool passage between the tank galley and the second hydraulic port associated with the spool; (29) wherein each of the spools have one or more spool actuators that cause or allow the spool to be in a neutral position, a first non-neutral position, or a second non-neutral position; (30) wherein the first hydraulic port of the first spool is hydraulically connected to the first hydraulic port of the third spool, and the second hydraulic port of the first spool is hydraulically connected to the second hydraulic port of the third spool; and (31) wherein the spool actuators for the first spool and the third spool are activated by a common controller, such that: (A) when the first spool is caused or allowed to be in a neutral position, then the third spool is also caused or allowed to be in a neutral position; (B) when the first spool is caused or allowed to be in a first non-neutral position, then the third spool is also caused or allowed to be in a first non-neutral position; and (C) when the first spool is caused or allowed to be in a second non-neutral position, then the third spool is also caused or allowed to be in a second non-neutral position.
地址 Cleveland OH US