发明名称 ELLIPSOMETRY SYSTEM
摘要 An ellipsometry system and a detection unit thereof are capable of achieving miniaturization and price reduction associated therewith. The ellipsometry system includes the detection unit that: has an optical polarization element; separates an interference polarization beam obtained by causing the object-reflected polarization beam and reference reflected polarization beam to interfere with each other into a plurality of interference polarization beams on a wavelength basis; and detects the respective separated polarization components in each wavelength. The optical polarization element: has a birefringence characteristic including a first refractive index and a second refractive index; receives the separated interference polarization beams of the respective wavelengths in a wavelength order and in a parallel manner; separates the separated interference polarization beam of each wavelength, on a polarization component basis, while transmitting the same, and outputs the respective separated polarization components in each wavelength in the same direction but along different optical axes.
申请公布号 US2014192364(A1) 申请公布日期 2014.07.10
申请号 US201214130694 申请日期 2012.07.09
申请人 Yatagai Toyohiko;Abraham Cense J. 发明人 Yatagai Toyohiko;Abraham Cense J.
分类号 G01N21/21 主分类号 G01N21/21
代理机构 代理人
主权项 1. An ellipsometry system for analyzing an object to be measured using polarization, comprising: a polarization beam generation unit that has a light source, and generates a polarization beam based on an outgoing light beam emitted from the light source; a polarization beam splitter that splits the generated polarization beam into a first polarization beam and a second polarization beam; a reference polarization beam unit that generates, from the first polarization beam, a reference polarization beam to be used as reference light when generating a tomographic image; a measurement unit that irradiates the object to be measured with the second polarization beam, and outputs an object-reflected polarization beam reflected from the object to be measured based on such irradiation; a detection unit that receives an interference polarization beam obtained by causing the reference polarization beam and the object-reflected polarization beam to interfere with each other and detects the interference polarization beam on a different polarization component basis; and a generation unit that generates the tomographic image of the object to be measured based on the polarization beam detected on a polarization component basis, wherein the detection unit has: a diffraction grating that separates the received interference polarization beam into a plurality of interference polarization beams on a wavelength basis as separated interference polarization beams;a polarization optical element that: has a birefringence characteristic including a first refractive index and a second refractive index; receives the separated interference polarization beams of the respective wavelengths in a wavelength order and in a parallel manner; separates the separated interference polarization beam of each wavelength into a plurality of separated interference polarization components on a polarization component basis as separated polarization components while transmitting the same, and outputs the respective separated polarization components in each wavelength in the same direction but along different optical axes; anddetection section that has two sensor arrays detecting light intensities of the interference polarization beams of each wavelength separated on a polarization component basis, respectively, the two sensor arrays being arranged side by side with a predetermined distance interval therebetween, andwherein a thickness in a transmission direction in the polarization optical element through which the interference polarization beams transmit is different for each wavelength of the interference polarization beam.
地址 Nagareyama-shi JP