发明名称 LOW VOLTAGE BANDGAP REFERENCE CIRCUIT
摘要 A low voltage bandgap reference circuit includes a positive temperature coefficient circuit unit, a negative temperature coefficient circuit unit and a load unit, wherein the positive temperature coefficient circuit unit comprises a first differential operational amplifier, a first, second and third transistor, a first resistor, a first and second diode, and the negative temperature coefficient circuit unit includes a second differential operational amplifier, a fourth, fifth and sixth transistor, a second resistor and a third diode. The low voltage bandgap reference circuit provides a current having a positive temperature coefficient characteristics and a current having a negative temperature coefficient characteristics to flow through the load unit, whereby generate a stable reference voltage thereon, which the stable reference voltage is less affected by the temperature. Therefore, it avoids the problems of the low voltage bandgap reference circuit can not be activated at low voltage.
申请公布号 US2014176112(A1) 申请公布日期 2014.06.26
申请号 US201313847570 申请日期 2013.03.20
申请人 INTEGRATED CIRCUIT SOLUTION INC. 发明人 CHANG CHING-HUNG;KUO CHUN-LUNG;WU CHING-TANG;WU CHUNG-CHENG;CHEN CHUNG-HAO
分类号 G05F3/02 主分类号 G05F3/02
代理机构 代理人
主权项 1. A low voltage bandgap reference circuit having a single stable operating point to provide a reference voltage, comprising: a positive temperature coefficient circuit unit for providing a current having a positive temperature coefficient characteristics, comprising a first differential operational amplifier, a first transistor, a second transistor, a third transistor, a first resistor, a first diode and a second diode, wherein source terminals of the first, second and third transistors are connected to a power source, gate terminals of the first, second and third transistors are in parallel connected to an output terminal of the first differential operational amplifier, a drain terminal of the first transistor is connected to a positive end of the first diode, a drain terminal of the second transistor is connected to one end of the first resistor, the other end of the first resistor is connected to a positive end of the second diode, negative ends of the first and second diodes are grounded, the drain terminal of the first transistor is further connected to an inverting input end of the first differential operational amplifier, and the drain terminal of the second transistor is further connected to a non-inverting input end of the first differential operational amplifier; a negative temperature coefficient circuit for providing a current having a negative temperature coefficient characteristics, comprising a second differential operational amplifier, a fourth transistor, a fifth transistor, a sixth transistor, a second resistor and a third diode, wherein source terminals of the fourth, fifth and sixth transistors are connected to the power source, gate terminals of the fourth, fifth and sixth transistors are in parallel connected to an output terminal of the second differential operational amplifier, a drain terminal of the fourth transistor is connected to a positive end of the third diode, a negative end of the third diode is grounded, a drain terminal of the fifth transistor is connected to one end of the second resistor, the other end of the second resistor is grounded, the drain terminal of the fourth transistor is further connected to an inverting input end of the second differential operational amplifier, and the drain terminal of the fifth transistor is further connected to a non-inverting input end of the second differential operational amplifier; and a load unit, having an end connected to a drain terminal of the third transistor and a drain terminal of the sixth transistor, and another end grounded, wherein the load unit provides the reference voltage across the two ends.
地址 HSIN-CHU TW