发明名称 Time-of-flight 3D imaging system comprising a detector for detecting electromagnetic radiation
摘要 A time-of-flight 3D imaging system comprising a detector for detecting electromagnetic radiation is constructed so that the detector includes a semiconductor substrate of a first doping type, and a well in the semiconductor substrate, the well being of a second doping type. The first doping type and the second doping type are different and the well has an increasing dopant concentration in a direction parallel to a surface of the semiconductor substrate. In addition, the detector includes a detector terminal doping region which is arranged at least partly in the well in a terminal region of the well. The detection of electromagnetic radiation is based on a generation of free charge carriers by the electromagnetic radiation in a detection region of the well. The detection region has a maximum dopant concentration which is lower than a maximum dopant concentration of the terminal region of the well.
申请公布号 US8748794(B2) 申请公布日期 2014.06.10
申请号 US201213677140 申请日期 2012.11.14
申请人 Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V. 发明人 Durini Romero Daniel;Brockherde Werner;Hosticka Bedrich
分类号 H01L27/00 主分类号 H01L27/00
代理机构 代理人
主权项 1. A time-of-flight 3D imaging system comprising a detector for detecting electromagnetic radiation, the detector comprising: a semiconductor substrate of a first doping type; a well in the semiconductor substrate, the well being of a second doping type, the first doping type and the second doping type being different, wherein the well comprises an increasing dopant concentration in a direction parallel to a surface of a semiconductor substrate; a detector terminal doping region which is arranged at least partly in the well in a terminal region of the well, the detector terminal doping region being of the same doping type as the well, wherein the detection of electromagnetic radiation is based on a generation of free charge carriers by the electromagnetic radiation in a detection region of the well which comprises a maximum dopant concentration which is lower than a maximum dopant concentration of the terminal region of the well, wherein the dopant concentration of the well increases monotonically in the direction parallel to the surface of the semiconductor substrate in a region between one end of the detection region facing away from the terminal region and one end of the terminal region facing away from the detection region; a transfer control electrode for controlling a transfer of free charge carriers in a region of the well, the transfer control electrode being arranged on the surface of the semiconductor substrate in a region of the well between the detector terminal doping region and the detection region, an electrically insulting layer being arranged between the semiconductor substrate and the transfer control electrode; and a collection control electrode for collecting free charge carriers in a region of the well, the collection control electrode being arranged on the surface of the semiconductor substrate in a region of the well between the detector terminal doping region and the detection region, an electrically insulating layer being arranged between the semiconductor substrate and the collection control electrode, the transfer control electrode being arranged at least partly between the collection control electrode and the detector terminal doping region.
地址 Munich DE