发明名称 一种用微电场控制溶致液晶担载药物分子的缓释方法
摘要 一种用微电场控制溶致液晶担载药物分子的缓释方法,该方法采用脉冲电场对溶致液晶的载药进行控释,利用溶致液晶独特的由双亲分子组成的有序结构对外界物理因素刺激的敏感性和GMO/F127的溶致液晶具有担载不同极性、不同种类药物的优点,根据理论推导出的引起液晶发生弹性形变的电场强度阈值<img file="DDA0000133677170000011.GIF" wi="247" he="97" />计算阈值电流密度jc=σE,从而设计并完成了小鼠体内的脉冲可控释放实验,验证了由电场控制溶致液晶包裹药物缓释方法的有效性,本发明的方法能用量化的条件控制药物的释放,显著提高药物的药效和利用率。
申请公布号 CN102526745B 申请公布日期 2013.02.27
申请号 CN201210023060.6 申请日期 2012.02.02
申请人 西安交通大学 发明人 张虎勤;刘芳娥;夏娟娟;杜建强;吴晓明;武亚艳
分类号 A61K47/34(2006.01)I;A61K47/14(2006.01)I;A61K9/10(2006.01)I;A61K38/28(2006.01)I;A61P3/10(2006.01)I 主分类号 A61K47/34(2006.01)I
代理机构 西安智大知识产权代理事务所 61215 代理人 弋才富
主权项 1.一种用微电场控制溶致液晶担载药物分子的缓释方法,其特征在于,包括下列步骤:步骤一、采用热处理法和乳化法制备GMO/F127溶致液晶微粒,按F127与GMO的质量比为10:80-120称取原料,用震荡器物理震荡5-10分钟混匀,震荡器功率为2000-2500W,震荡频率为80-100Hz,放入恒定温度为50℃-60℃的水浴锅中,采用磁力搅拌子以40-60转/分的速度搅拌8-12小时得到粗分散的均质,静置孵化7-10天,用细胞破碎机间歇超声探头超声3-5次,每次15-20分钟,间歇5-10分钟,超声功率为800—1000W,超声频率为20-25KHz,然后在离心机中以每分钟1万转速度离心5-8分钟,静置20-30小时即可制得纳米液晶微粒,20-30℃条件下避光保存;步骤二、制备GMO/F127溶致液晶载药体系,在恒定温度20℃-30℃下,将步骤一中制备的纳米液晶微粒以转速20-50rmp低速旋转,并以5-12滴/分钟的速率,按1.5-2.0mg/ml的比例逐滴加入所要担载的药物,均匀混合3-5小时,制得GMO/F127溶致液晶载药体系,静置于20-30℃避光保存;步骤三、绘制待担载的药物的标准溶液工作曲线,检测GMO/F127溶致液晶担载药物的包裹率,首先根据需要配置不同浓度梯度的药物标准溶液,利用紫外可见分光光度计测量不同浓度的药物的特征吸收峰和吸光度,从而绘制出待担载药物的标准曲线,用紫外可见分光光度计测量GMO/F127溶致液晶包裹药物后溶液中游离的药物的吸光度,用吸光度值的变化来反映药物的浓度;由包裹率计算公式:<img file="FDA0000241362741.GIF" wi="1731" he="194" />式中W<sub>总</sub>——载体中药物的总的含量W<sub>游</sub>——载体外游离药物的含量计算出GMO/F127溶致液晶载体担载药物的包裹率;步骤四、构建溶致液晶在电场效应下发生弹性形变的阈值的计算体系:假定溶致液晶的厚度为d,把坐标原点取在膜的中央,同时取z 轴与指向矢n 平行,即膜的上、下界面处于Z=±d/2位置,在垂直于指向矢n 的方向X 轴方向施加电场E,则电场将使指向矢n的排列发生变化,从大区域整体来看,分子之间并不互相平行,所以,液晶的立方相结构等效于很多个弯曲垂直排列的液晶盒,液晶受外界电场作用下将发生形变,导致形变所需的能量为曲率弹性能,当GMO/F127溶致液晶的指向矢n发生了形变,根据液晶连续弹性体理论和能量守恒定律,在电场作用下液晶体系的吉布斯自由能:G=G<sub>el</sub>-G<sub>e</sub>               (1-2)则有:δG=δG<sub>el</sub>-δG<sub>e</sub>          (1-3)式中: G<sub>el</sub> —— GMO/F127溶致液晶的弹性形变能;G<sub>e</sub> —— GMO/F127溶致液晶的电场自由能;<maths num="0001"><![CDATA[<math><mrow><msub><mi>G</mi><mi>el</mi></msub><mo>=</mo><mo>&Integral;</mo><msub><mi>g</mi><mi>el</mi></msub><mi>d&tau;</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&Integral;</mo><mo>[</mo><msub><mi>k</mi><mn>11</mn></msub><msup><mrow><mo>(</mo><mo>&dtri;</mo><mo>&CenterDot;</mo><mi>n</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msub><mi>k</mi><mn>22</mn></msub><msup><mrow><mo>(</mo><mi>n</mi><mo>&CenterDot;</mo><mo>&dtri;</mo><mo>&times;</mo><mi>n</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msub><mi>k</mi><mn>33</mn></msub><msup><mrow><mo>(</mo><mi>n</mi><mo>&times;</mo><mo>&dtri;</mo><mo>&times;</mo><mi>n</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>]</mo><mi>d&tau;</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>4</mn><mo>)</mo></mrow></mrow></math>]]></maths>式中: k<sub>11</sub> —— 展曲弹性常数;k<sub>22</sub> —— 扭曲弹性常数;k<sub>33</sub> —— 弯曲弹性常数,<maths num="0002"><![CDATA[<math><mrow><msub><mi>G</mi><mi>e</mi></msub><mo>=</mo><mo>&Integral;</mo><msub><mi>g</mi><mi>e</mi></msub><mi>d&tau;</mi><mo>=</mo><mfrac><mn>1</mn><mrow><mn>8</mn><mi>&pi;</mi></mrow></mfrac><mo>&Integral;</mo><mi>E</mi><mo>&CenterDot;</mo><mi>Dd&tau;</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>5</mn><mo>)</mo></mrow></mrow></math>]]></maths>其中电场强度E是常量,所以<img file="FDA0000241362744.GIF" wi="428" he="128" />;当溶致液晶达到平衡状态时,为一种稳定状态,根据经典物理中能量最低原则, G=G<sub>el</sub>-G<sub>e</sub>具有最小值,对G求极小值:<maths num="0003"><![CDATA[<math><mrow><mi>G</mi><mo>=</mo><mo>&Integral;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>[</mo><msub><mi>k</mi><mn>11</mn></msub><msup><mrow><mo>(</mo><mo>&dtri;</mo><mo>&CenterDot;</mo><mi>n</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msub><mi>k</mi><mn>22</mn></msub><msup><mrow><mo>(</mo><mi>n</mi><mo>&CenterDot;</mo><mo>&dtri;</mo><mo>&times;</mo><mi>n</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msub><mi>k</mi><mn>33</mn></msub><msup><mrow><mo>(</mo><mi>n</mi><mo>&times;</mo><mo>&dtri;</mo><mo>&times;</mo><mi>n</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msub><mi>k</mi><mn>33</mn></msub><msup><mrow><mo>(</mo><mi>n</mi><mo>&times;</mo><mo>&dtri;</mo><mo>&times;</mo><mi>n</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>-</mo><mfrac><mn>1</mn><mrow><mn>4</mn><mi>&pi;</mi></mrow></mfrac><msub><mi>&epsiv;</mi><mi>a</mi></msub><msup><mrow><mo>(</mo><mi>n</mi><mo>&CenterDot;</mo><mi>E</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>]</mo><mi>d&tau;</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>6</mn><mo>)</mo></mrow></mrow></math>]]></maths>式中:k<sub>11</sub>——液晶的展曲弹性系数;k<sub>22</sub>——液晶的扭曲弹性系数;k<sub>33</sub>——液晶的弯曲弹性系数,在电场作用下,距离原点为z处的指向矢将与Z轴成θ角,而θ是z的函数即θ=θ(z),则n<sub>1</sub>=sinθ(z),n<sub>2</sub>=0,n<sub>3</sub>=cosθ(z),因此,GMO/F127溶致液晶的自由能密度为:<maths num="0004"><![CDATA[<math><mrow><mi>g</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><munderover><mo>&Integral;</mo><mfrac><mi>d</mi><mn>2</mn></mfrac><mfrac><mi>d</mi><mn>2</mn></mfrac></munderover><mo>[</mo><mrow><mo>(</mo><msub><mi>k</mi><mn>11</mn></msub><msup><mi>sin</mi><mn>2</mn></msup><mi>&theta;</mi><mo>+</mo><msub><mi>k</mi><mn>33</mn></msub><msup><mi>cos</mi><mn>2</mn></msup><mi>&theta;</mi><mo>)</mo></mrow><msup><mrow><mo>(</mo><mfrac><mi>d&theta;</mi><mi>dz</mi></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>-</mo><mfrac><mn>1</mn><mrow><mn>4</mn><mi>&pi;</mi></mrow></mfrac><msub><mi>&epsiv;</mi><mi>a</mi></msub><msup><mi>E</mi><mn>2</mn></msup><msup><mi>sin</mi><mn>2</mn></msup><mi>&theta;</mi><mo>]</mo><mi>dz</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>7</mn><mo>)</mo></mrow></mrow></math>]]></maths>(1-7)式中,只存在k<sub>11</sub>和k<sub>33</sub>,不存在k<sub>22</sub>,表明GMO/F127溶致液晶在电场作用下只能够产生展曲和弯曲形变,不能产生扭曲形变;平衡态下自由能密度应该具有最小值,则可导出下式:<maths num="0005"><![CDATA[<math><mrow><mfrac><mrow><mi>d</mi><mo>[</mo><mrow><mo>(</mo><msub><mi>k</mi><mn>11</mn></msub><msup><mi>sin</mi><mn>2</mn></msup><mi>&theta;</mi><mo>+</mo><msub><mi>k</mi><mn>33</mn></msub><msup><mi>cos</mi><mn>2</mn></msup><mi>&theta;</mi><mo>)</mo></mrow><msup><mrow><mo>(</mo><mfrac><mi>d&theta;</mi><mi>dz</mi></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>-</mo><mfrac><mn>1</mn><mrow><mn>4</mn><mi>&pi;</mi></mrow></mfrac><msub><mi>&epsiv;</mi><mi>a</mi></msub><msup><mi>E</mi><mn>2</mn></msup><msup><mi>sin</mi><mn>2</mn></msup><mi>&theta;</mi><mo>]</mo></mrow><mi>dz</mi></mfrac><mo>=</mo><mn>0</mn><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>8</mn><mo>)</mo></mrow></mrow></math>]]></maths>在(1-8)中,因为被积函数是与x<sub>3</sub>,θ,<img file="FDA0000241362748.GIF" wi="88" he="141" />有关的函数,故自由能密度g的Euler-Lagrange方程为:<maths num="0006"><![CDATA[<math><mrow><mfrac><mrow><mrow><mo>(</mo><msub><mi>k</mi><mn>11</mn></msub><msup><mi>sin</mi><mn>2</mn></msup><mi>&theta;</mi><mo>+</mo><msub><mi>k</mi><mn>33</mn></msub><msup><mi>cos</mi><mn>2</mn></msup><mi>&theta;</mi><mo>)</mo></mrow><msup><mi>d</mi><mn>2</mn></msup><mi>&theta;</mi></mrow><mrow><mi>d</mi><msup><mi>z</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mrow><mo>(</mo><msub><mi>k</mi><mn>11</mn></msub><mo>-</mo><msub><mi>k</mi><mn>33</mn></msub><mo>)</mo></mrow><mi>sin</mi><mi></mi><mi>&theta;</mi><mi>cos</mi><mi>&theta;</mi><msup><mrow><mo>(</mo><mfrac><mi>d&theta;</mi><mi>dz</mi></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><mfrac><mrow><msub><mi>&epsiv;</mi><mi>a</mi></msub><msup><mi>E</mi><mn>2</mn></msup><mi>sin</mi><mi></mi><mi>&theta;</mi><mi>cos</mi><mi>&theta;</mi></mrow><mrow><mn>4</mn><mi>&pi;</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>9</mn><mo>)</mo></mrow></mrow></math>]]></maths>对(1-9)式两边分别乘上<img file="FDA00002413627410.GIF" wi="112" he="128" />,则有:<maths num="0007"><![CDATA[<math><mrow><mfrac><mrow><mi>d</mi><mrow><mo>(</mo><msub><mi>k</mi><mn>11</mn></msub><msup><mi>sin</mi><mn>2</mn></msup><mi>&theta;</mi><mo>+</mo><msub><mi>k</mi><mn>33</mn></msub><msup><mi>cos</mi><mn>2</mn></msup><mi>&theta;</mi><mo>)</mo></mrow></mrow><mi>dz</mi></mfrac><msup><mrow><mo>(</mo><mfrac><mi>d&theta;</mi><mi>dz</mi></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><mfrac><mrow><msub><mi>&epsiv;</mi><mi>a</mi></msub><msup><mi>E</mi><mn>2</mn></msup><mi>d</mi><mrow><mo>(</mo><msup><mi>sin</mi><mn>2</mn></msup><mi>&theta;</mi><mo>)</mo></mrow></mrow><mrow><mn>4</mn><mi>&pi;dz</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>10</mn><mo>)</mo></mrow></mrow></math>]]></maths>将(1-10)式两边z从0到d/2进行积分,注意到z=d/2处存在θ=0,在z=0处溶致液晶的最大形变角θ<sub>M</sub>具有<img file="FDA00002413627412.GIF" wi="225" he="128" />,可得:<maths num="0008"><![CDATA[<math><mrow><mrow><mo>(</mo><msub><mi>k</mi><mn>11</mn></msub><msup><mi>sin</mi><mn>2</mn></msup><mi>&theta;</mi><mo>+</mo><msub><mi>k</mi><mn>33</mn></msub><msup><mi>cos</mi><mn>2</mn></msup><mi>&theta;</mi><mo>)</mo></mrow><msup><mrow><mo>(</mo><mfrac><mi>d&theta;</mi><mi>dz</mi></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mrow><mn>4</mn><mi>&pi;</mi></mrow></mfrac><msub><mi>&epsiv;</mi><mi>a</mi></msub><msup><mi>E</mi><mn>2</mn></msup><msup><mi>sin</mi><mn>2</mn></msup><mi>&theta;</mi><mo>=</mo><mfrac><mn>1</mn><mrow><mn>4</mn><mi>&pi;</mi></mrow></mfrac><msub><mi>&epsiv;</mi><mi>a</mi></msub><msup><mi>E</mi><mn>2</mn></msup><msup><mi>sin</mi><mn>2</mn></msup><msub><mi>&theta;</mi><mi>M</mi></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>11</mn><mo>)</mo></mrow></mrow></math>]]></maths>当z&gt;0,θ随z递增θ逐渐减小,可得:<maths num="0009"><![CDATA[<math><mrow><mo>-</mo><mfrac><mi>d&theta;</mi><mi>dz</mi></mfrac><mo>=</mo><msup><mrow><mo>[</mo><mfrac><mrow><mfrac><mn>1</mn><mrow><mn>4</mn><mi>&pi;</mi></mrow></mfrac><msub><mi>&epsiv;</mi><mi>a</mi></msub><msup><mi>E</mi><mn>2</mn></msup><mrow><mo>(</mo><msup><mi>sin</mi><mn>2</mn></msup><msub><mi>&theta;</mi><mi>M</mi></msub><mo>-</mo><msup><mi>sin</mi><mn>2</mn></msup><mi>&theta;</mi><mo>)</mo></mrow></mrow><mrow><msub><mi>k</mi><mn>33</mn></msub><mo>+</mo><mrow><mo>(</mo><msub><mi>k</mi><mn>11</mn></msub><mo>-</mo><msub><mi>k</mi><mn>33</mn></msub><mo>)</mo></mrow><msup><mi>sin</mi><mn>2</mn></msup><mi>&theta;</mi></mrow></mfrac><mo>]</mo></mrow><mfrac><mn>1</mn><mn>2</mn></mfrac></msup><mo>,</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>12</mn><mo>)</mo></mrow></mrow></math>]]></maths>设k=sinθ<sub>M</sub>,<img file="FDA00002413627415.GIF" wi="253" he="141" />,<img file="FDA00002413627416.GIF" wi="272" he="188" />,sinθ=ksinλ,可得:<maths num="0010"><![CDATA[<math><mrow><mo>[</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mfrac><mi>&eta;</mi><mn>2</mn></mfrac></mrow><msqrt><mn>1</mn><mo>-</mo><msup><mi>k</mi><mn>2</mn></msup><msup><mi>sin</mi><mn>2</mn></msup><mi>&lambda;</mi></msqrt></mfrac><mo>-</mo><mfrac><mi>&eta;</mi><mn>2</mn></mfrac><msqrt><mn>1</mn><mo>-</mo><msup><mi>k</mi><mn>2</mn></msup><msup><mi>sin</mi><mn>2</mn></msup><mi>&lambda;</mi></msqrt><mo>]</mo><mi>d&lambda;</mi><mo>=</mo><mo>-</mo><mfrac><mi>dz</mi><mi>&xi;</mi></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>13</mn><mo>)</mo></mrow></mrow></math>]]></maths>注意边界条件z=0处,θ=θ<sub>M</sub>,λ=π/2;在z=d/2处,θ=0,λ=0;将(1-13)式两边x<sub>3</sub>分别从0积分到d/2,可得:<maths num="0011"><![CDATA[<math><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><mi>&eta;</mi><mn>2</mn></mfrac><mo>)</mo></mrow><mi>F</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>-</mo><mfrac><mi>&eta;</mi><mn>2</mn></mfrac><mi>E</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mi>d</mi><mrow><mn>2</mn><mi>&xi;</mi></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>14</mn><mo>)</mo></mrow></mrow></math>]]></maths>式中:F(k) —— 第一类完全椭圆积分;E(k) —— 第二类完全椭圆积分,当θ<sub>M</sub>=0,则k=0,而F(0)=E(0)=π/2, 由(1-14)式可得π=d/ξ,代入<img file="FDA00002413627419.GIF" wi="272" he="188" />,即可得到强度阈值:<maths num="0012"><![CDATA[<math><mrow><msub><mi>E</mi><mi>c</mi></msub><mo>=</mo><mfrac><mrow><mn>2</mn><mi>&pi;</mi></mrow><mi>d</mi></mfrac><msqrt><mfrac><msub><mi>&pi;k</mi><mn>33</mn></msub><msub><mi>&epsiv;</mi><mi>a</mi></msub></mfrac></msqrt><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>15</mn><mo>)</mo></mrow></mrow></math>]]></maths>由阈值场强可求得阈值电流密度为:jc=σE                      (1-16)式中: σ——液晶分子电导率,步骤五、GMO/F127溶致液晶载药体系在脉冲电场控制下实现控制释放,将担载药物的GMO/F127溶致液晶体系置于脉冲电场中,调节脉冲电场的强度,当外加电场强度超过阈值E<sub>c</sub>或流过液晶分子的电流密度大于阈值jc,将引起GMO/F127溶致液晶立方相膜结构发生形变,导致药物载体的结构和性质发生改变,将药物释放出来,这样就会引起药物在载体中的浓度差和驱动力变化;当外加电场强度低于阈值E<sub>c</sub>或流过液晶分子的电流密度小于阈值jc,担载药物的GMO/F127溶致液晶体系将停止释放药物,从而实现脉冲控制药物释放;同时控制外加电场强度不能高于GMO/F127溶致液晶的弹性形变能力,否则过大的电场强度超过了GMO/F127溶致液晶的弹性形变能力,会破坏其结构,影响控制药物释放的效果。
地址 710048 陕西省西安市咸宁路28号