发明名称 Method of producing electricity and a hydrogen-rich gas by steam reforming a hydrocarbon fraction with calorie input by in situ hydrogen combustion
摘要 The production of synthesis gas by steam reforming of a hydrocarbon charge in a steam reforming reactor and co-production of electrical energy, comprises obtaining the intake of calories for the steam forming reaction by a part of combustion effluent (6) of dilute hydrogen. The combustion is carried out in the interior of the reactor-exchanger. Air necessary for combustion is compressed to an absolute pressure of 0.4-4 MPa by a compressor unit. The effluent from the combustion having a dilution circuit is recycled to enter the dilute hydrogen (5) into the reactor-exchanger. The production of synthesis gas by steam reforming of a hydrocarbon charge in a steam reforming reactor and co-production of electrical energy, comprises obtaining the intake of calories for the steam forming reaction by a part of combustion effluent (6) of dilute hydrogen. The combustion is carried out in the interior of the reactor-exchanger. Air necessary for the combustion is compressed to an absolute pressure of 1.5-2 MPa by a compressor unit. The effluent from the combustion having a dilution circuit is recycled to enter the dilute hydrogen (5) into the reactor-exchanger and to limit the oxygen content to less than 10 mol.%. in the reactor-exchanger. The other part of the combustion effluent is introduced in a post combustion chamber. The resulting flow of the combustion with hydrogen in the post combustion chamber is slacked in a turbine, which provides energy part necessary to the compressor and induces an alternator ensuring the co-production of electric power. The combustion effluent is reintroduced into the reactor exchanger at a temperature close to the effluent exit. The temperature difference of the effluents is lower than 5[deg]C. The proportion of the recycled combustion effluent upstream of the reactor-exchanger is 20-90 mol.% of the combustion effluent. The recycled combustion effluent (60-90 mol.%) is introduced into the reactor-exchanger when mixed with the air combustion (3). The combustion effluent is divided into a first flow introduced into the combustion chamber, and a second flow cooled in a first exchanger using a cooling fluid, in a second exchanger using an exterior cooling fluid and in an air cooler (9). The outgoing flow of the air cooler is introduced into a separation ball without water. A pressure level identical to the pressure of the reactor-exchanger is heated and reintroduced in the reactor-exchanger under a form of flow at 1-5[deg]C. The combustion effluent without water is recompressed in a compressor with a pressure level higher than the reactor exchanger pressure, then is heated in the exchanger and introduced into a postcombustion chamber using hydrogen as fuel, to 1200[deg]C, and slacked in a relaxation turbine identical to the reactor exchanger before reintroducing the effluent into the reactor exchanger at a temperature close to that of the combustion effluent. Introducing air supply in the compressor to produce a compressed air to the first flow supplying the first combustion chamber. The effluent of the combustion chamber is introduced into the relaxation turbine to form a flow of compressed air. The combustion circuit is not generating carbon dioxide discharge.
申请公布号 EP1854761(A3) 申请公布日期 2010.12.29
申请号 EP20070290468 申请日期 2007.04.17
申请人 IFP ENERGIES NOUVELLES 发明人 FISCHER, BEATRICE;GIROUDIERE, FABRICE;ARNAUD, ANTHONY
分类号 C01B3/38;F02C3/22;F02C6/00;F02C6/18;F23C9/00 主分类号 C01B3/38
代理机构 代理人
主权项
地址