发明名称 DIFFERENTIAL ELECTRIC ENGINE WITH VARIABLE TORQUE CONVERSION
摘要 1. A differential engine with a variable torque output, said differential engine comprising: (a) a motor for driving an output shaft at a rotational speed and applying an input rotational torque to said output shaft; (b) a torque conversion stage coupled to said motor for converting said input rotational torque into a rotational torque at an output drive shaft for coupling to a load; (c) said torque conversion stage including a first differential stage, said first differential stage having an input shaft coupled to the output shaft of said motor, and said first differential stage having a gear mechanism for translating the rotational torque from said input shaft to first and second output shafts and said gear mechanism driving each of said output shafts at the same speed and in opposing rotational directions; (d) said torque conversion stage including a second differential stage, said second differential stage having a first input shaft coupled to the first output shaft of said first differential stage, and a second input shaft coupled to the second output shaft of said first differential stage, and including a gear mechanism for applying a rotational torque to said output drive shaft when a difference occurs between the rotational speeds of the first and second input shafts for the second differential stage; (e) a loading mechanism, said loading mechanism being coupled to one of said input shafts on said second differential stage, said loading mechanism being responsive to a control input for loading said input shaft to vary the rotational speed of the associated input shaft. 2. The differential engine as claimed in claim 1, wherein said motor comprises an electric motor, and said electric motor includes a constant speed controller for operating the electric motor at a constant rotational speed in a predetermined direction. 3. The differential engine as claimed in claim 2, wherein said loading mechanism comprises an electric generator having a rotor, one end of said rotor being coupled to the output shaft of said first differential stage, and the other end of said rotor being coupled to the input shaft of said second differential stage, and said loading mechanism including a load capable of drawing a current from said electric generator in response to said control input. 4. The differential engine as claimed in claim 3, wherein said load comprises a battery charging circuit and a storage battery, said battery charging circuit being responsive to said control input for producing a regenerative charging current for charging said battery, and said battery being coupled to said electric motor for providing an energy storage device. 5. The differential engine as claimed in claim 4, further including a second electric generator having a rotor, one end of said rotor being coupled to the other output shaft of said first differential stage, and the other end of said rotor being coupled to the other input shaft of said second differential stage, and said generator generating an output in response to the rotational torque applied to said rotor by said input shaft and said output shaft. 6. The differential engine as claimed in claim 5, further including a second battery charging circuit, said second battery charging circuit having an input coupled to the output of said second generator and said second battery charging circuit being responsive to said control input for producing a regenerative charging current for charging said battery. 7. The differential engine as claimed in claim 3, wherein the output shaft of said first differential stage and the input shaft of said second differential stage are connected together, and the output and the input shafts include an embedded induction squirrel cage and form the rotor for the electric generator. 8. The differential engine as claimed in claim 3, wherein said load comprises a variable electric resistive load, said variable electric resistive load being responsive the control input for varying the load applied. 9. The differential engine as claimed in claim 3, wherein said load comprises an electrolytic chemical stage. 10. The differential engine as claimed in claim 1, wherein said loading mechanism comprises a mechanical braking device, said mechanical braking device being coupled to one of the input shafts in said second differential stage, and said mechanical braking device being responsive to the control input for varying the braking load applied to the input shaft. 11. The differential engine as claimed in claim 2, further including a drive mechanism, said drive mechanism being coupled to the other of said input shafts on said second differential stage, said drive mechanism being responsive to a drive control input for rotating said input shaft at a variable rotational speed. 12. The differential engine as claimed in claim 11, wherein said loading mechanism comprises an electric generator having a rotor, one end of said rotor being coupled to the output shaft of said first differential stage, and the other end of said rotor being coupled to the input shaft of said second differential stage, and said electric generator including an output for coupling to a load capable of drawing a current from said electric generator in response to said control input. 13. The differential engine as claimed in claim 12, said drive mechanism comprises an electric motor having a rotor, one end of said rotor being coupled to the output shaft of said first differential stage, and the other end of said rotor being coupled to the input shaft of said second differential stage, and said electric motor including an input for coupling to the output of said electric generator and drawing a current from said electric generator in response to the drive control input. 14. The differential engine as claimed in claim 13, further including a controller for generating said control input and said drive control input, said controller having a generator driver coupled to said electric generator and being responsive to said control input for operating said electric generator to load said input shaft, and said controller including a motor driver coupled to said electric motor and being responsive to said drive control input for operating said electric motor to rotate said other input shaft, and said controller including a speed sensor coupled to said output drive shaft for determining the rotational speed of said output drive shaft. 15. The differential engine as claimed in claim 14, wherein said controller further includes a network communication bus, said network communication bus providing an interface to another differential engine. 16. The differential engine as claimed in claim 14, wherein said controller further includes a torque sensor coupled to said output drive shaft for determining the rotational torque of said output drive shaft. 17. The differential engine as claimed in claim 2, further including an input stage and a second motor for driving an output motor shaft, said input stage having a first input shaft coupled to the output shaft of said first motor, and a second input shaft coupled to the output motor shaft of said second motor, and said input stage having an output shaft and said output shaft being coupled to the input shaft of said first differential stage, and said input stage including a gear mechanism for translating the rotational torque from said output motor shaft and said output shaft to the output shaft of said input stage, and the output motor shaft for said second motor rotating in the same direction as the output shaft for the first motor. 18. The differential engine as claimed in claim 17, wherein said first motor comprises an electric motor and said second motor comprises a gasoline motor, and said electric motor includes a constant speed controller for operating the electric motor at a constant rotational speed in a predetermined direction. 19. The differential engine as claimed in claim 18, wherein said loading mechanism comprises an electric generator having a rotor, one end of said rotor being coupled to the output shaft of said first differential stage, and the other end of said rotor being coupled to-the input shaft of said second differential stage, and said loading mechanism including a load capable of drawing a current from said electric generator in response to said control input. 20. The differential engine as claimed in claim 19, wherein said load comprises a battery charging circuit and a storage battery, said battery charging circuit being responsive to said control input for producing a regenerative charging current for charging said battery, and said battery being coupled to said electric motor for providing an energy storage device. 21. A differential engine with a variable torque output, said differential engine comprising: (a) a motor for driving an output shaft at a constant speed in a predetermined direction; (b) a transmission stage having an input shaft and an output drive shaft for driving a load, said input shaft being coupled to the output shaft of said motor; (c) a regenerative charging stage, said regenerative charging stage having an input for receiving power from said transmission stage and charging an energy storage device; (d) said transmission stage comprising a first differential stage and a second differential stage, said first differential stage having a drive mechanism coupled to said input shaft, and said second differential stage having a drive mechanism coupled to said output drive shaft, and the drive mechanism for said first differential stage being coupled to the drive mechanism for said second differential stage through first and second differential shafts, said differential shafts rotating in opposite directions at the same speed; (e) said transmission stage including a generator coupled to one of said differential shafts, said generator being responsive to a control input for generating the power output for said regenerative chargi
申请公布号 EA005267(B1) 申请公布日期 2004.12.30
申请号 EA20030001157 申请日期 2002.04.26
申请人 C V I T PATENT TECHNOLOGIES INC. 发明人 WEISZ, ERVIN
分类号 B60K17/04;B60K1/02;B60K6/365;B60K6/445;B60L15/00;B60W10/08;B60W10/26;F16H3/72 主分类号 B60K17/04
代理机构 代理人
主权项
地址