发明名称 Recuperated Rankine boost cycle
摘要 An improvement to Rankine type heat recovery power cycles by adding heat source heat exchanger(s) in parallel with the existing recuperator(s) and in series with the existing heat source exchangers.
申请公布号 US9359919(B1) 申请公布日期 2016.06.07
申请号 US201514665534 申请日期 2015.03.23
申请人 Berry James E. 发明人 Berry James E.
分类号 F01K25/08;F01K25/10;F01K9/00 主分类号 F01K25/08
代理机构 Mendelsohn Dunleavy, P.C. 代理人 Mendelsohn Dunleavy, P.C. ;Mendelsohn Steve;Dunleavy Kevin J.
主权项 1. A thermodynamic system comprising: a pump having a low-pressure input port connected to a high-pressure output port; a first flow divider having an input port connected to first and second output ports, wherein (i) the input port of the first flow divider is connected to the high-pressure output port of the pump and (ii) the first flow divider divides a working fluid stream received at the input port of the first flow divider into working fluid streams at the first and second output ports of the first flow divider; a first recuperator having (i) a first port connected to a second port and (ii) a third port connected to a fourth port, wherein the third port of the second recuperator is connected to the first output port of the first flow divider; a bypass valve having an input port connected to an output port, wherein the input port of the bypass valve is connected to the second output port of the first flow divider; and a first flow mixer having first and second input ports connected to an output port, wherein (i) the first input port of the first flow mixer is connected to the fourth port of the first recuperator, (ii) the second input port of the first flow mixer is connected to the output port of the bypass valve, and (iii) the first flow mixer combines working fluid streams received at the first and second input ports of the first flow mixer into a working fluid stream at the output port of the first flow mixer; a second flow divider having an input port connected to first and second output ports, wherein (i) the input port of the second flow divider is connected to the output port of the first flow mixer and (ii) the second flow divider divides a working fluid stream received at the input port of the second flow divider into working fluid streams at the first and second output ports of the second flow divider; a first heat exchanger having (i) a first port connected to a second port and (ii) a third port connected to a fourth port, wherein the third port of the first heat exchanger is connected to the first output port of the second flow divider; a second recuperator having (i) a first port connected to a second port and (ii) a third port connected to a fourth port, wherein: the third port of the second recuperator is connected to the second output port of the second flow divider; andthe second port of the second recuperator is connected to the first port of the first recuperator; a second flow mixer having first and second input ports connected to an output port, wherein (i) the first input port of the second flow mixer is connected to the fourth port of the first heat exchanger, (ii) the second input port of the second flow mixer is connected to the fourth port of the second recuperator, and (iii) the second flow mixer combines working fluid streams received at the first and second input ports of the second flow mixer into a working fluid stream at the output port of the second flow mixer; a second heat exchanger having (i) a first port connected to a second port and (ii) a third port connected to a fourth port, wherein: the third port of the second heat exchanger is connected to the output port of the second flow mixer; andthe second port of the second heat exchanger is connected to the first port of the first heat exchanger; an expansion device that converts fluid energy into mechanical energy, the expansion device having a high-pressure input port connected to a low-pressure output port, wherein: the high-pressure input port of the expansion device is connected to the fourth port of the second heat exchanger; andthe low-pressure output port of the expansion device is connected to the first port of the second recuperator; a condenser/cooler having (i) a first port connected to a second port and (ii) a third port connected to a fourth port, wherein (a) the first port of the condenser/cooler is connected to the second port of the first recuperator and (b) the second port of the condenser/cooler is connected to the low-pressure input port of the pump, wherein: within the first heat exchanger, heat flows from a heat-source fluid stream received at the first port of the first heat exchanger to the working fluid stream received at the third port of the first heat exchanger;within the second heat exchanger, heat flows from a heat-source fluid stream received at the first port of the second heat exchanger to the working fluid stream received at the third port of the second heat exchanger;within the first recuperator, heat flows from a working fluid stream received at the first port of the first recuperator to a working fluid stream received at the third port of the first recuperator;within the second recuperator, heat flows from a working fluid stream received at the first port of the second recuperator to a working fluid stream received at the third port of the second recuperator;within the condenser/cooler, heat flows from a working fluid stream received at the first port of the condenser/cooler to a cooling fluid stream received at the third port of the condenser/cooler; andwithin the thermodynamic system, the working fluid streams from the high-pressure output port of the pump to the high-pressure input port of the expansion device are all above the critical pressure of the working fluid.
地址 Cherry Hill NJ US