发明名称 Pivotal lateral cage and method of insertion
摘要 A process for inserting a pivotable interbody spacer including an insertion instrument configured to manipulate a pivotable interbody spacer during insertion, wherein the insertion instrument includes means for coupling the interbody spacer and a means for fixing the angular position of the interbody spacer. According to one method for inserting an interbody spacer in a spinal disk space, the interbody spacer is grasped by the insertion instrument and fixed at a first angular position. The interbody spacer is next inserted into a surgical site. Next, the interbody spacer is released from a first angular position. Then, the insertion instrument is pivoted about a coupling of the interbody spacer such that the interbody spacer is in a second angular position. The angular position of the interbody spacer is then fixed in the second angular position. This insertion process continues until the interbody spacer is positioned in the desired location.
申请公布号 US9345587(B2) 申请公布日期 2016.05.24
申请号 US201313958163 申请日期 2013.08.02
申请人 Beacon Biomedical, LLC 发明人 Mitchell Dale
分类号 A61F2/44;A61F2/46;A61F2/30;A61F2/28 主分类号 A61F2/44
代理机构 McHale & Slavin, P.A. 代理人 McHale & Slavin, P.A.
主权项 1. A surgical kit comprising: an interbody spacer (100) said interbody spacer including an upper face (124) and an opposing lower face (126), a pair of side rails (104), an integrally formed spindle (108) extending transversely and connecting said side rails at a proximal end (112), said spindle including a friction barrel portion a center cross support (106) connecting said side rails at a central portion and a leading cross support (107) connecting said side rails at a distal end 114 of said interbody implant, said spindle (108) including a plurality of teeth (120) or other frictionally engaging features extending around the periphery thereof, said teeth arranged about an axis of rotation (138) extending through said transverse spindle (108) to provide various angles of engagement between an insertion tool (200) and said interbody spacer (100); an insertion tool (200) for use with said interbody spacer (100), said insertion tool (200) including a handle (210) configured to facilitate manual grasping thereof, a distal end of said insertion tool being constructed and. arranged for grasping said spindle and subsequent manipulation of said pivotable interbody spacer (100), said manipulation including the ability to rotate said interbody spacer with respect to said insertion tool about said axis of rotation (138) without releasing said interbody spacer, said distal end including a pair of opposing jaws (240, 250) which can be moved into three distinct positions that correspond to three different jaw configurations for enclosing and grasping said friction barrel, a first position corresponds to an open jaw configuration whereby a first jaw (240) and a second jaw (250) are extended out of said insertion tool and apart from each other so that said jaws can pass onto said friction barrel (122) and around an outer perimeter of said transverse spindle (108) without substantial resistance, a second position corresponds to an enclosing and grasping jaw configuration, whereby said opposing jaws (240, 250) are brought together around the outer perimeter of said friction barrel (122) whereby said spindle of said interbody spacer (100) is enclosed and firmly grasped by said jaws (240, 250) in a manner that still allows the outer perimeter of said friction barrel (122) to rotate within the internal space created by the closed jaws (240, 250) without allowing the interbody spacer (100) to be disengaged from the insertion tool (200), and a third position corresponds to a locked jaw configuration, whereby said opposing jaws (240, 250) are brought together around the outer perimeter of said friction barrel (122) and said jaws (240, 250) are retracted into said insertion tool such that a structural feature of said interbody spacer interlocks with a portion of said insertion tool such that the interlocking prevents the pivoting of said interbody spacer (100) with respect to said insertion tool (200).
地址 Jupiter FL US