发明名称 Millimeter-wave waveguide communication system
摘要 The present disclosure provides a millimeter-wave waveguide communication system. The millimeter-wave waveguide communication system may comprise: a clock component, and at least two sets of millimeter-wave receiving/transmitting channels. The clock component is configured to provide a clock signal to sending ends and receiving ends of the two sets of millimeter-wave receiving/sending channels respectively. Each set of millimeter-wave receiving/sending channels comprises: a transmitter component, a receiver component and a transmission waveguide. The transmission waveguide is located between the transmitter component and the receiver component and is configured to provide a channel for millimeter-wave transmission. The top face, side face and/or bottom face of the transmission waveguide, except for active devices and accessories thereof, are plated with a metal conductive wall to form an electromagnetic shield from a transmission waveguide in an adjacent millimeter-wave receiving/sending channel. The metal conductive wall can minimize the crosstalk between the channels during high-speed communications, thereby improving data bandwidth and data throughput of the millimeter-wave communication system.
申请公布号 US9520942(B2) 申请公布日期 2016.12.13
申请号 US201214379998 申请日期 2012.02.24
申请人 Institute of Microelectronics, Chinese Academy of Sciences 发明人 Cao Liqiang;Wang Qidong;Guidotti Daniel
分类号 H04B10/12;H04B10/25;H04B10/90;H05K1/02;H04B10/00 主分类号 H04B10/12
代理机构 Schwegman Lundberg & Woessner, P.A. 代理人 Schwegman Lundberg & Woessner, P.A.
主权项 1. A millimeter-wave waveguide communication system, comprising a clock component and at least two sets of millimeter-wave receiving and transmitting channels, wherein the clock component is configured to provide a synchronization carrier signal to sending ends and receiving ends of the at least two sets of millimeter-wave receiving and transmitting channels, respectively; and each set of millimeter-wave receiving and transmitting channels comprises: a transmitter component, a transmission waveguide, and a receiver component, wherein: the transmitter component is configured to modulate a synchronization carrier signal of a sending end by using a signal to be transmitted so as to generate a millimeter-wave signal, and to couple the millimeter-signal to the transmission waveguide;the receiver component is configured to detect, from the transmission waveguide, the millimeter signal carrying the signal to be transmitted, to demodulate the millimeter signal by using a synchronization carrier signal of a receiving end, and to obtain the signal to be transmitted;the transmission waveguide is located between the transmitter component and the receiver component and configured to provide a channel for millimeter-wave transmission; a top face, at least one of a side face and a bottom face of the transmission waveguide, except for active devices and accessories thereof, being plated with a metal conductive all to form an electromagnetic shield from a transmission waveguide in an adjacent millimeter-wave receiving and transmitting channel; wherein the clock component comprises: a global optical clock, configured to generate a synchronization optical clock signal, and to transmit synchronization optical clock signal to the sending ends and the receiving ends of the millimeter-wave waveguide communication system, respectively, over an optical fiber; a sending end optical detector, located at the sending ends of the millimeter-wave waveguide communication system, and configured to generate a synchronization carrier signal in a form of an electrical signal by using the synchronization optical clock signal, and to transmit the synchronization carrier signal to the transmitter component of the at least two sets of millimeter-wave receiving and transmitting channels; and a receiving, end optical detector, located at the receiving ends of the millimeter-wave waveguide communication system, and configured to generate a synchronization carrier signal in a form of an electrical signal by using the synchronization optical clock signal, and to transmit the synchronization carrier signal to the receiver component of the at least two sets of millimeter-wave receiving and transmitting channels.
地址 Beijing CN