发明名称 Pressure detecting apparatus made by 3D printing technologies being able to be used in dangerous areas
摘要 A pressure detecting apparatus made by 3D printing technologies being able to be used in dangerous areas is provided. It mainly comprises a light source, a processor, a coupler, and at least one pressure transducer. The pressure transducer comprises a main body and a fiber grating. The fiber grating comprises a fiber Bragg grating sensor, and the fiber grating is fixed on the main body and covers the fiber Bragg grating sensor. When the main body is placed in a fluid area, the fluid would flow through the opening to deform the strain layer and generate a strain variation on the fiber Bragg grating sensor to cause a signal variation in the reflection frequency spectrum. The coupler is configured to couple to the light source and the pressure transducer to decode the signal variation into pressure parameters.
申请公布号 US9588001(B2) 申请公布日期 2017.03.07
申请号 US201414516581 申请日期 2014.10.17
申请人 NATIONAL KAOHSIUNG UNIVERSITY OF APPLIED SCIENCES 发明人 Chiang Chia-Chin;Hsieh Tso- Sheng
分类号 G01L9/00;G01L11/02;G01M3/04 主分类号 G01L9/00
代理机构 代理人 Shih Chun-Ming
主权项 1. A pressure detecting apparatus made by 3D printing technologies comprising: a light source, being able to emit a detecting optical signal to at least one pressure transducer; a coupler, being able to couple the light source and the pressure transducer for receiving a reflection frequency signal fed back from the pressure transducer and to decode the variation of the reflection frequency signal into a pressure parameter for being transmitted to a processor; wherein the pressure transducer comprises: a main body having a strain layer and at least one opening, wherein the strain layer is set in the longitudinal axis direction of the main body and separates the main body into a first compartment and a second compartment, the opening is formed on a surface in the cross axis direction of the main body to connect to the second compartment; a fiber grating, having an input and an output, wherein the fiber grating comprises at least one fiber Bragg grating sensor, and the two sides of the fiber grating are fixed on the two sides of the center line of the cross axis of the main body, the fiber grating is fixed on the strain layer, and the fiber Bragg grating sensor is located on the fiber grating of the second compartment, the fiber grating covers a portion of the fiber Bragg grating sensor and is formed on the shortest path of two openings, the input of the fiber grating is configured to receive the detecting optical signal emitted from the light source, and the fiber grating is configured to generate the reflection frequency signal to the coupler after receiving the detecting optical signal, the reflection frequency signal is derived from reflection of the detecting optical signal inside the grating of the fiber Bragg grating sensor, when the main body is placed in a fluid region detecting the pressure parameters of the location, the fluid flows through the two openings and generates loading on the strain layer, thus the strain layer deforms and generates a strain variation on the fiber Bragg grating sensor to cause a signal variation in the reflection frequency spectrum.
地址 Kaohsiung TW