发明名称 DNA-BINDING PROTEIN USING PPR MOTIF, AND USE THEREOF
摘要 The object of the present invention is to, by analyzing PPR proteins that act to bind to DNA with a prediction that RNA recognition rules of PPR motifs can also be used for recognition of DNA, find a PPR protein showing such a characteristic. According to the present invention, it was revealed that, with a protein that can bind in a DNA base-selective manner or a DNA base sequence-specific manner, which contains one or more, preferably 2 to 30, more preferably 5 to 25, most preferably 9 to 15, of PPR motifs having a structure of the following formula 1 (wherein, in the formula 1, Helix A is a part that can form an α-helix structure; X does not exist, or is a part consisting of 1 to 9 amino acids; Helix B is a part that can form an α-helix structure; and L is a part consisting of 2 to 7 amino acids), and having a specific combination of amino acids corresponding to a DNA base or DNA base sequence as amino acids of three positions of No. 1 A.A., No. 4 A.A., in Helix A of the formula 1 and No. “ii” (-2) A.A. contained in L of the formula 1, the aforementioned object could be achieved.;(Helix A)-X-(Helix B)-L  (Formula 1)
申请公布号 US2016075744(A1) 申请公布日期 2016.03.17
申请号 US201414785952 申请日期 2014.04.22
申请人 KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION ;HIROSHIMA UNIVERSITY 发明人 Yamamoto Takashi;Sakuma Tetsushi;Nakamura Takahiro;Yagi Yusuke;Okawa Yasuyuki
分类号 C07K14/415;C12N15/85;C12N9/22 主分类号 C07K14/415
代理机构 代理人
主权项 1. A protein that can bind in a DNA base-selective manner or a DNA base sequence-specific manner, which contains one or more PPR motifs having a structure of the following formula 1: [Formula 1] (Helix A)-X-(Helix B)-L  (Formula 1) (wherein, in the formula 1: Helix A is a part that can form an α-helix structure; X does not exist, or is a part consisting of 1 to 9 amino acids; Helix B is a part that can form an α-helix structure; and L is a part consisting of 2 to 7 amino acids), wherein, under the following definitions: the first amino acid of Helix A is referred to as No. 1 amino acid (No. 1 A.A.), the fourth amino acid as No. 4 amino acid (No. 4 A.A.), and when a next PPR motif (Mn+1) contiguously exists on the C-terminus side of the PPR motif (Mn) (when there is no amino acid insertion between the PPR motifs), the -2nd amino acid counted from the end (C-terminus side) of the amino acids constituting the PPR motif (Mn);when a non-PPR motif consisting of 1 to 20 amino acids exists between the PPR motif (Mn) and the next PPR motif (Mn+1) on the C-terminus side, the amino acid locating upstream of the first amino acid of the next PPR motif (Mn+1) by 2 positions, i.e., the -2nd amino acid; orwhen any next PPR motif (Mn+1) does not exist on the C-terminus side of the PPR motif (Mn), or 21 or more amino acids constituting a non-PPR motif exist between the PPR motif (Mn) and the next PPR motif (Mn+1) on the C-terminus side, the 2nd amino acid counted from the end (C-terminus side) of the amino acids constituting the PPR motif (Mn) is referred to as No. “ii” (-2) amino acid (No. “ii” (-2) A.A.), one PPR motif (Mn) contained in the protein is a PPR motif having a specific combination of amino acids corresponding to a target DNA base or target DNA base sequence as the three amino acids of No. 1 A.A., No. 4 A.A., and No. “ii” (-2) A.A.
地址 Fukuoka-shi, Fukuoka JP