发明名称 Portable filtration unit
摘要 The present invention relates to portable filtration units including filter components mated with retentate and permeate flow channels wherein particle containing solutions are introduced into the portable filtration units and contacted with the filter components for filtration thereby producing a retentate outflow and a permeate outflow for capture of desired end product.
申请公布号 US9101883(B2) 申请公布日期 2015.08.11
申请号 US201013510985 申请日期 2010.11.29
申请人 SMARTFLOW TECHNOLOGIES, INC. 发明人 Pugh Marc;Benson Todd;Hibbitts Richard;Kacmar Jim;Cooke Gary;Marconi Derrick;Davis Kim;Seamans Diane;Holzer Greg;Eggers Michael
分类号 B01D63/08;B01D61/24 主分类号 B01D63/08
代理机构 Moore & Van Allen, PLLC 代理人 Fuierer Marianne;Moore & Van Allen, PLLC
主权项 1. A portable filtration unit for separating a target substance from a source fluid, the unit comprising: a polymeric shaped housing comprising: a) a retentate endplate wherein the retentate endplate comprises a first retentate surface and a second retentate surface opposite from the first retentate surface wherein the first retentate surface comprises a retentate input port and retentate output port and the second retentate surface comprises an recessed retentate flow channel within the retentate endplate, wherein the recessed retentate flow channel is positioned along the longitudinal axis of the retentate endplate and in fluid communication with the retentate input and retentate output ports and has a channel height from about 0.10 to about 1.5 mm, wherein the retentate endplate has a length along the longitudinal axis that is greater than a width of retentate endplate; wherein the retentate channel is configured such that fluid flows essentially without deflection from the retentate inlet to the retentate outlet b) a permeate endplate wherein the permeate endplate comprises a first permeate surface and a second permeate surface opposite from the first permeate surface wherein the first permeate surface comprises a permeate input port and permeate output port and the second permeate surface comprise a recessed permeate flow channel within the permeate endplate, where in the recessed permeate flow channel is positioned along the longitudinal axis of the permeate endplate and in fluid communication with the permeate input and permeate output ports, wherein the recessed permeate flow channel is in fluid communication with at least a section of the recessed retentate flow channel, wherein the permeate endplate has a length along the longitudinal axis that is greater than a width of the permeate endplate; c) a filter membrane screen positioned between the retentate endplate and the permeate endplate and having a length of at least the recessed permeate flow channel, wherein the filter membrane screen has a porosity rating that allows particles smaller than the pores to pass through and larger particles will remain in the retentate stream; and d) a permeate screen positioned within the recessed permeate flow channel and between the permeate endplate and the filter membrane screen of c), wherein the permeate screen provides flow channels for flow of the permeate within the recessed permeate flow channel, wherein the recessed retentate flow channel extends longitudinally beyond the recessed permeate flow channel and the retentate input port and retentate output port of the retentate endplate extend beyond the permeate input port and permeate output port of the permeate endplate; and wherein the retentate endplate and the permeate endplate are connected.
地址 Apex NC US