发明名称 Multi-mode optical measurement device and method of operation
摘要 An optical measurement device is provided includes a tracker device configured to emit a first beam of light and receive a portion of the first beam of light reflected off of a target. The first beam of light being emitted from a gimbal location, the tracker device further including an absolute distance meter configured to determine the distance to the target. A scanner device is provided that is configured to emit a second beam of light along a pathway without reversing direction and receive a portion of the second beam of light reflected off an object. The second beam of light being emitted from the gimbal location, the scanner further being configured to determine the distance to the object based at least in part on the speed of light.
申请公布号 US9036134(B2) 申请公布日期 2015.05.19
申请号 US201313765014 申请日期 2013.02.12
申请人 FARO TECHNOLOGIES, INC. 发明人 Steffey Kenneth;Bridges Robert E.;Parker David H.
分类号 G01S7/481;G01C15/00;G01S17/66;G01S17/89;G01S7/48 主分类号 G01S7/481
代理机构 Cantor Colburn LLP 代理人 Cantor Colburn LLP
主权项 1. A coordinate measurement device comprising: an optical delivery system; a first absolute distance meter including a first light source, a first optical detector, and a first electrical circuit, the first light source configured to send a first light through the optical delivery system to a retroreflector target, the first optical detector further configured to generate a first electrical signal in response to the first light reflected by the retroreflector target and to transmit the first electrical signal to the first electrical circuit, the first electrical circuit configured to determine a first distance from the coordinate measurement device to the retroreflector target based at least in part on the first electrical signal; a second absolute distance meter including a second light source, a second optical detector, and a second electrical circuit, the second light source configured to send a second light through the optical delivery system to an object surface, the second optical detector configured to receive the second light reflected by the object surface and passed through the optical delivery system, the second optical detector further configured to generate a second electrical signal in response to the second light reflected by the object surface and to send the second electrical signal to the second electrical circuit, the second electrical circuit configured to determine a second distance from the coordinate measurement device to the object surface based at least in part on the second electrical signal; a structure operably coupled to the optical delivery system, the first absolute distance meter, and the second absolute distance meter; a first motor configured to rotate the structure about a first axis; a first angular transducer operably coupled to the structure, the first angular transducer configured to measure a first angle of rotation about the first axis; a second motor configure to rotate the structure about a second axis, the second axis being substantially perpendicular to the first axis; a second angular transducer operably coupled to the structure, the second angular transducer configured to measure a second angle of rotation about the second axis; a position detector, the position detector configured to receive a portion of radiation emitted by the coordinate measurement device and reflected by the retroreflector target, the position detector configured to generate a third electrical signal based at least in part on a location at which the portion of radiation strikes the position detector; and a processor, the processor having computer readable media configured to operate in a first mode and a second mode, the first mode including tracking the retroreflector target based at least in part on the third electrical signal, determining a first three-dimensional coordinate of the retroreflector target based at least in part on the first angle of rotation to the retroreflector target at a first position, the second angle of rotation to the retroreflector target at the first position, and the first distance of the retroreflector target at the first position, the second mode including directing the second light to the object surface while continuously and monotonically changing the first angle of rotation and the second angle of rotation, the second mode further including determining a second three-dimensional coordinate of a point on the object surface based at least in part on the first angle of rotation to the point on the object surface, the second angle of rotation to the point on the object surface, and the second distance of the point on the object surface.
地址 Lake Mary FL US