发明名称 Thin plenoptic cameras using solid immersion lenses
摘要 Methods and apparatus for capturing and rendering high-quality photographs using relatively small, thin plenoptic cameras. Plenoptic camera technology, in particular focused plenoptic camera technology including but not limited to super-resolution techniques, and other technologies such as solid immersion lens (SIL) technology may be leveraged to provide thin form factor, megapixel resolution cameras suitable for use in mobile devices and other applications. In addition, at least some embodiments of these cameras may also capture radiance, allowing the imaging capabilities provided by plenoptic camera technology to be realized through appropriate rendering techniques. Hemispherical SIL technology, along with multiple main lenses and a mask on the photosensor, may be employed in some thin plenoptic cameras. Other thin cameras may include a layer between hemispherical SILs and the photosensor that effectively implements superhemispherical SIL technology in the camera.
申请公布号 US9030550(B2) 申请公布日期 2015.05.12
申请号 US201113288765 申请日期 2011.11.03
申请人 Adobe Systems Incorporated 发明人 Georgiev Todor G.
分类号 H04N5/225 主分类号 H04N5/225
代理机构 Wolfe-SBMC 代理人 Wolfe-SBMC
主权项 1. A camera, comprising: a photosensor configured to capture light projected onto the photosensor, the photosensor comprising a plurality of pixels; a plurality of objective lenses each configured to refract light from a scene located in front of the camera to form an image of the scene at an image plane of the plurality of objective lenses, the image plane being a same image plane for each of the plurality of objective lenses; and a plurality of solid immersion lenses (SILs) positioned between the plurality of objective lenses and the photosensor, each SIL sampling a respective region of the image of the scene formed at the image plane by the plurality of objective lenses; each SIL being configured to project a respective region of the image of the scene sampled by the respective SIL through holes of an opaque mask and onto a separate location on the photosensor, each location including one or more pixel elements of the photosensor, and each SIL affecting light passing through the SIL to reduce a wavelength of the light according to a refractive index of the SIL that is greater than or equal to 1.5, reduction of the wavelength being effective to reduce a size of pixels projected onto the respective one or more pixel elements to a size of the holes in the opaque mask, a pixel size being less than 500 nanometers (nm) at each pixel element, 500 nm being approximately the wavelength of light.
地址 San Jose CA US