发明名称 SYSTEM AND METHOD FOR NONLINEAR RADAR
摘要 A non-linear radar is disclosed that is able to detect non-linear target responses that are below the harmonic-noise floor of the radar. To accomplish this below-the-noise-floor sensitivity feature the proposal specifically addresses all of the problems commonly faced by non-linear radar such as linearity of the transmitter path, receiver path, and size, weight, and power, and cost (SWaP-C). The radar operates in both standard and nonlinear modes with signal processing that allows display of nonlinear alone, linear alone, or both types of backscatter. Different combinations of six methodologies allow customization to fit different application needs, from low-cost modest performance, to higher cost and extremely high performance.
申请公布号 US2014313071(A1) 申请公布日期 2014.10.23
申请号 US201414255146 申请日期 2014.04.17
申请人 MCCORKLE John W. 发明人 MCCORKLE John W.
分类号 G01S7/28;G01S13/02 主分类号 G01S7/28
代理机构 代理人
主权项 1. A nonlinear radar (NLR) comprising: transmitter circuitry configured to generate a plurality of base transmission pulses at a base transmission power; a switchable transmitter power-modifying circuit configured to receive the plurality of base transmission pulses, and for each of the base transmission pulses, to select a transmitter power-modification path from a first transmitter power-modification path that modifies the base transmission power to a first transmission power, and a second transmitter power-modification path that modifies the base transmission power to a second transmission power, the second transmission power being greater than the first transmission power; a transmitter antenna configured to transmit the power-modified transmission pulses toward a reflective object; a receiver antenna configured to receive a plurality of base reflected pulses at differing base reflected powers; a switchable receiver power-modifying circuit configured to receive the plurality of base reflected pulses, and for each of the base reflected pulses, to select a receiver power-modification path from a first receiver power-modification path that modifies the base reflected power to a first receiver power, and a second receiver power-modification path that modifies the base reflected power to a second receiver power, the first receiver power being greater than the second receiver power; receiver circuitry configured to process the power-modified reflected pulses, wherein each base reflected pulse corresponds to a corresponding power-modified transmission pulse that has been reflected off the reflective object, a transmission ratio of the first transmission power to the second transmission power is the same as a receiver ratio of the second receiver power to the first receiver power, the receiver circuitry is configured to subtract one of a first power-modified reflected pulse and a second power-modified reflected pulse from the other of the first power-modified reflected pulse and the second power-modified reflected pulse, the first and second power-modified reflected pulses are based on identical base transmission pulses, the first power-modified reflected pulse is at the first receiver power, and is based on a first power-modified transmission pulse that was transmitted at the first transmission power, and the second power-modified reflected pulse is at the second receiver power, and is based on a second power-modified transmission pulse that was transmitted at the second transmission power.
地址 Vienna VA US