发明名称 电化学计时电位检测器
摘要 电化学计时电位检测器,由流通池、工作电极W、参比电极R、辅助电极C、电流电位切换电路、清洗电位给定电路、起始电位给定电路、正极性恒电流发生给定电路、负极性恒电流发生给定电路、控制器、电位信号检测电路、终止电位检测电路、信号调理电路、A/D、采样电路、时间信号发生电路、信号处理器、显示电路和电源电路组成,是一种采用电化学计时电位方法为原理的分析方法,通过控制器进行控制,用于液相色谱、离子色谱、毛细管电泳、微流芯片分析等分析方法的检测。恒电流是指在负载变化时仍能保持恒定的直流或线性变化恒速率的电流,由恒流源发生。本发明提出一种新的检测方法,可以使电化学计时电位分析应用于液相类色谱仪器的检测。
申请公布号 CN100353161C 申请公布日期 2007.12.05
申请号 CN200510042200.4 申请日期 2005.04.01
申请人 许建民 发明人 许建民;许一楠
分类号 G01N27/49(2006.01);G01N27/00(2006.01) 主分类号 G01N27/49(2006.01)
代理机构 济宁宏科利信专利代理事务所 代理人 樊庆年;张景宏
主权项 1、电化学计时电位检测器,由流通池(1)、工作电极W(2)、参比电极R(3)、辅助电极C(4)、电流电位切换电路(5)、清洗电位给定电路(6)、起始电位给定电路(7)、正极性恒电流发生给定电路(8)、负极性恒电流发生给定电路(9)、控制器(10)、电极电位信号检测电路(11)、终止电位检测电路(12)、信号调理电路(13)、模拟数字变换电路A/D(14)、采样电路(15)、时间信号发生电路(16)、信号处理器(17)、显示电路(18)和电源电路(19)组成,基本原理是采用计时电位分析原理,通过控制器(10)进行控制,将由起始电位给定电路(7)产生的起始电位,经过控制器(10)控制电流电位切换电路(5),施加到辅助电极C(4)上,再通过流通池溶液最终施加到工作电极W(2)上,作为检测器开始工作的起始电位,之后再由控制器(10)控制,由正极性恒电流发生给定电路(8)或者负极性恒电流发生给定电路(9)所发生的恒电流,通过电流电位切换电路(5)施加到辅助电极C(4),再通过流通池溶液施加到工作电极W(2)上,在恒电流作用下,工作电极W(2)上的电极电位从起始电位向预定的终止电位方向变化,参比电极R(3)从始至终检测这个变化的电位,检测到的电位通过电极电位信号检测电路(11)输至信号调理电路(13),调整为模拟数字变换电路A/D(14)所需要的标准信号,经模拟数字变换电路A/D(14)转换为数字信号,信号采样电路(15)对已经变换为数字的信号进行采集,其特征在于在电流电位切换电路(5)的控制作用下,当辅助电极C(4)上的起始电位从施加起始电位转换为施加恒电流的同时,在控制器(10)的作用下,时间信号发生电路(16)启动工作,信号采样电路(15)在采集已经变换为数字信号的工作电极W(2)电位变化信号的同时,同步采集由时间信号发生电路(16)所发生的时间信号,采集到的信号送至信号处理器(17),由于是连续采样,每一点电位直到终止电位都有对应的时间信号,当到达终止电位时,由终止电位检测电路(12)检测到,通知控制器(10)由控制器(10)控制时间信号发生电路(16)停止工作,同时由控制器(10)控制已预先在清洗电位给定电路(6)设定好的清洗电位经过电流电位切换电路(5)施加到辅助电极C(4),再通过溶液最终施加到工作电极W(2)上,至此,完成了一个检测过程;信号处理器(17)建立一个X、Y、Z三坐标体系,以电位信号为Y轴,时间信号为Z轴,每一个检测过程总时间为X轴,每一次检测过程时间为ΔX,将每一次由信号采集电路(15)采集到的时间信号为t,在有氧化还原反应时因电位停滞而在某一电位上获得的时间值t的函数为τ,每一次采集的电位信号为Y,反复多次检测的结果在坐标系内X轴上顺序排列,到最后检测结束,形成X轴内容,与每一次获得的Y、Z方向信号合成最终形成一个三维计时电位检测图;以X轴原点为起点,以从原点到检测到某一分离组分时间轴X轴上的τ值最大值的保留时间用于定性,而τ值的最大值可用来定量,同样原理可对其他组分定性定量;当对每一次获得的时间——电位曲线,即t-E曲线,进行微分后,可获得dt/dE-E曲线,依次排列后,在Z方向的函数值即为dt/dE,也可以从原点到某一分离组分时间轴X轴上的dt/dE最大值保留时间用于定性,而某一组分dt/dE最大值可用来定量。
地址 272023山东省济宁市高新区火炬工业园4号楼E303济宁东盛电子仪器有限公司