发明名称 Broad Spectrum, Endpoint Detection Window Multilayer Chemical Mechanical Polishing Pad
摘要 A multilayer chemical mechanical polishing pad is provided, having: a polishing layer having a polishing surface, a counterbore opening, a polishing layer interfacial region parallel to the polishing surface; a porous subpad layer having a bottom surface and a porous subpad layer interfacial region parallel to the bottom surface; and, a broad spectrum, endpoint detection window block comprising, comprises an olefin copolymer; wherein the window block exhibits a uniform chemical composition across its thickness; wherein the polishing layer interfacial region and the porous subpad layer interfacial region form a coextensive region; wherein the multilayer chemical mechanical polishing pad has a through opening that extends from the polishing surface to the bottom surface of the porous subpad layer; wherein the counterbore opening opens on the polishing surface, enlarges the through opening and forms a ledge; and, wherein the window block is disposed within the counterbore opening.
申请公布号 US2014256232(A1) 申请公布日期 2014.09.11
申请号 US201313788892 申请日期 2013.03.07
申请人 Inc. Rohm and Haas Electronic Materials CMP Holding;DOW GLOBAL TECHNOLOGIES LLC 发明人 Repper Angus;Leugers Mary A.;James David B.;DeGroot Marty W.
分类号 B24B37/20;B24B37/013;B24B37/22 主分类号 B24B37/20
代理机构 代理人
主权项 1. A multilayer chemical mechanical polishing pad for polishing a substrate selected from at least one of a magnetic substrate, an optical substrate and a semiconductor substrate; comprising: a polishing layer having a polishing surface, a counterbore opening, an outer perimeter, a polishing layer interfacial region parallel to the polishing surface and an average non-interfacial region thickness, TP-avg, measured in a direction perpendicular to the polishing surface from the polishing surface to the polishing layer interfacial region; a porous subpad layer having a bottom surface, an outer perimeter and a porous subpad layer interfacial region parallel to the bottom surface; a pressure sensitive adhesive layer; and, a broad spectrum, endpoint detection window block having a thickness, TW, along an axis perpendicular to a plane of the polishing surface; wherein the broad spectrum, endpoint detection window block, comprises an olefin copolymer; wherein the olefin copolymer is a reaction product of initial components comprising: ethylene; a branched or straight chain C3-30 α-olefin; a silane; and, optionally, a polyolefin; wherein the broad spectrum, endpoint detection window block exhibits a uniform chemical composition across its thickness, TW; wherein the broad spectrum, endpoint detection window block exhibits a spectrum loss ≦60%; wherein the polishing layer interfacial region and the porous subpad layer interfacial region form a coextensive region; wherein the coextensive region secures the polishing layer to the porous subpad layer without the use of a laminating adhesive; wherein the pressure sensitive adhesive layer is applied to the bottom surface of the porous subpad layer; wherein the multilayer chemical mechanical polishing pad has a through opening that extends from the polishing surface to the bottom surface of the porous subpad layer; wherein the counterbore opening opens on the polishing surface, enlarges the through opening and forms a ledge; wherein the counterbore opening has an average depth, DO-avg, from a plane of the polishing surface to the ledge measured in a direction perpendicular to the polishing surface; wherein the average depth, DO-avg, is less than the average non-interfacial region thickness, TP-avg; wherein the broad spectrum, endpoint detection window block is disposed within the counterbore opening; wherein the broad spectrum, endpoint detection window block is bonded to the polishing layer; and, wherein the polishing surface is adapted for polishing the substrate.
地址 US