发明名称 THREE-DIMENSIONAL MOUNTING METHOD AND THREE-DIMENSIONAL MOUNTING DEVICE
摘要 A three-dimensional mounting method for successively laminating N number of upper-layer joining materials includes positioning a first upper-layer joining material relative to a lowermost-layer joining material by recognizing an alignment position of the lowermost-layer joining material and a lower face alignment position of the first upper-layer joining material by a two-field image recognition unit, storing positional coordinates of the alignment position of the lowermost-layer joining material, positioning an (n+1)-th upper-layer joining material relative to an n-th upper-layer joining material by recognizing an upper face alignment position of the n-th upper-layer joining material and a lower face alignment position of the (n+1)-th upper-layer joining material, storing positional coordinates of the upper face alignment position of the n-th upper-layer joining material, recognizing an upper face alignment position of the N-th uppermost-layer joining material, and storing positional coordinates of the upper face alignment position of the N-th uppermost-layer joining material.
申请公布号 US2017005068(A1) 申请公布日期 2017.01.05
申请号 US201415038963 申请日期 2014.11.19
申请人 TORAY ENGINEERING CO., LTD. 发明人 NISHIMURA Koji;TERADA Katsumi;KAWAKAMI Mikio
分类号 H01L23/00;H01L25/00;H01L25/065 主分类号 H01L23/00
代理机构 代理人
主权项 1. A three-dimensional mounting method in which N number of upper-layer joining materials with electrodes on upper and lower faces are successively laminated onto a lowermost-layer joining material with an electrode such that positions of the electrodes of the upper-layer joining materials and a position of the electrode of the lowermost-layer joining material are arranged in an aligned state, the three-dimensional mounting method comprising: when laminating a first upper-layer joining material over the lowermost-layer joining material, positioning the first upper-layer joining material relative to the lowermost-layer joining material by recognizing an alignment position of the lowermost-layer joining material and a lower face alignment position marked on a lower face of the first upper-layer joining material by a two-field image recognition unit, and storing positional coordinates of the alignment position of the lowermost-layer joining material; when joining an (n+1)-th upper-layer joining material over an n-th upper-layer joining material, where 1≦n≦N−1, positioning the (n+1)-th upper-layer joining material relative to the n-th upper-layer joining material by recognizing an upper face alignment position marked on an upper face of the n-th upper-layer joining material and a lower face alignment position marked on a lower face of the (n+1)-th upper-layer joining material by the two-field image recognition unit, and storing positional coordinates of the upper face alignment position of the n-th upper-layer joining material; and after laminating an N-th uppermost-layer joining material, recognizing an upper face alignment position marked on an upper face of the N-th uppermost-layer joining material, and storing positional coordinates of the upper face alignment position of the N-th uppermost-layer joining material.
地址 Tokyo JP